DEEPAWALI ASSIGNMENT

CLASS 11 FOR TARGET IIT JEE 2012 SOLUTION

IMAGE OF SHRI GANESH LAXMI SARASWATI

Director \& H.O.D. IITJEE Mathematics
SUHAG R. KARIYA (S.R.K. Sir) DOWNLOAD FREE STUDY PACKAGE, TEST SERIES FROM WWw.tekoclasses.com Bhopal : Phone : (0755) 3200000

Wishing You \& Your Family A Very Hannv_\& Prosperous Deepawali

Time Limit : 6 Sitting Each of 75 Minutes duration approx.
NOTE: This assignment will be discussed on the very first day after
Deepawali Vacation, hence come prepared.
M.M. 80

Time : 75 Min.

[STRAIGHT OBJECTIVE TYPE]

Q. 1 If $\log (\mathrm{x}+\mathrm{z})+\log (\mathrm{x}-2 \mathrm{y}+\mathrm{z})=2 \log (\mathrm{x}-\mathrm{z})$ then $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in
(A) A.P.
(B) G.P.
(C*) H.P.
(D) A.G.P.
[Sol. $\quad \log [(x+z)(x-2 y+z)]=2 \log (x-z)=\log (x-z)^{2}$
$\Rightarrow \quad(\mathrm{x}+\mathrm{z})(\mathrm{x}-2 \mathrm{y}+\mathrm{z})=(\mathrm{x}-\mathrm{z})^{2} \quad \Rightarrow \quad(\mathrm{x}+\mathrm{z})^{2}-(\mathrm{x}-\mathrm{z})^{2}=2 \mathrm{y}(\mathrm{x}+\mathrm{z})$
$\left.\Rightarrow \quad 4 x z=2 y(x+z) \Rightarrow \quad y=\frac{2 x z}{x+z}\right]$
Q. 2 If $x \in R$ and $b<c$, then $\frac{x^{2}-b c}{2 x-b-c}$ has no values.
(A) in $(-\infty, b)$
(B) in (c, ∞)
(C*) between b and c
(D) between - c and -b
[Sol. $y=\frac{x^{2}-b c}{2 x-b-c} \Rightarrow \quad x^{2}-2 y x+(b+c) y-b c=0$
$\Delta \geq 0 \Rightarrow 4 y^{2}-4(b+c) y+4 b c \geq 0$
$\Rightarrow \quad(y-b)(y-c) \geq 0 \Rightarrow y \in(-\infty, b] \cup[c, \infty)]$
Q. 3 The ends of a quadrant of a circle have the coordinates $(1,3)$ and $(3,1)$ then the centre of the such a circle is
(A*) $(1,1)$
(B) $(2,2)$
(C) $(2,6)$
(D) $(4,4)$
[Hint: $\quad(\mathrm{AM})^{2}+(\mathrm{OM})^{2}=(\mathrm{OA})^{2}$
$2+(a-2)^{2}+(b-2)^{2}=(a-3)^{2}+(b-1)^{2}$
$2-4 a-4 b+8=-6 a-2 b+10$
$\Rightarrow \quad \mathrm{a}=\mathrm{b}$
Also $\quad(\mathrm{OA})^{2}+(\mathrm{OB})^{2}=(\mathrm{AB})^{2}$

$$
2\left[(a-1)^{2}+(a-3)^{2}\right]=8
$$

$\Rightarrow \quad \mathrm{a}=1$ or $\mathrm{a}=3$]

Q. $4 \quad \mathrm{ABCD}$ is a rhombus. If A is $(-1,1)$ and C is $(5,3)$, the equation of BD is
(A) $2 x-3 y+4=0$
(B) $2 x-y+3=0$
(C*) $3 x+y-8=0$
(D) $x+2 y-1=0$
[Sol. Find equation of straight line through $(2,2)$ having slope -3

Q. 5 Let ABC be a triangle with $\angle \mathrm{A}=45^{\circ}$. Let P be a point on the side BC with $\mathrm{PB}=3$ and $\mathrm{PC}=5$. If ' O^{\prime} is the circumcentre of the triangle ABC then the length OP is equal to
(A) $\sqrt{15}$
(B*) $\sqrt{17}$
(C) $\sqrt{18}$
(D) $\sqrt{19}$
[Sol. Using sine law

$$
\begin{aligned}
& \frac{a}{\sin A}=2 R \\
& 8 \sqrt{2}=2 R \quad \Rightarrow \quad R=4 \sqrt{2}
\end{aligned}
$$

using power of a point

$$
\begin{aligned}
& (\mathrm{PB})(\mathrm{PC})=(\mathrm{PD})(\mathrm{PE}) \\
& 15=(\mathrm{R}-\mathrm{x})(\mathrm{R}+\mathrm{x}) \\
& 15=\mathrm{R}^{2}-\mathrm{x}^{2} \Rightarrow \\
\therefore \quad & \mathrm{x}=\sqrt{17} \text { Ans. }]
\end{aligned}
$$

Q. 6 If the sides of a right angled triangle are in A.P., then $\frac{R}{r}=$
(A*) $\frac{5}{2}$
(B) $\frac{7}{3}$
(C) $\frac{9}{4}$
(D) $\frac{8}{3}$
[Sol. Let the sides be $a-d, a, a+d$
$(a-d)^{2}+a^{2}=(a+d)^{2} \Rightarrow a=4 d$
The sides 3d, 4d, 5d

$$
\begin{aligned}
& \mathrm{R}=\frac{5 \mathrm{~d}}{2}, \mathrm{r}=\frac{\Delta}{\mathrm{s}}=\frac{6 \mathrm{~d}^{2}}{6 \mathrm{~d}}=\mathrm{d} \\
\therefore \quad & \frac{\mathrm{R}}{\mathrm{r}}=\frac{5}{2} \text { Ans.] }
\end{aligned}
$$

Q. $7 \quad$ Let C be a circle $\mathrm{x}^{2}+\mathrm{y}^{2}=1$. The line l intersects C at the point $(-1,0)$ and the point P . Suppose that the slope of the line l is a rational number m. Number of choices for m for which both the coordinates of P are rational, is
(A) 3
(B) 4
(C) 5
(D*) infinitely many
[Sol. Equation of the line l is
$\mathrm{y}-0=\mathrm{m}(\mathrm{x}+1)$
solving it with $x^{2}+y^{2}=1$

$$
\begin{gather*}
\begin{array}{l}
x^{2}+\mathrm{m}^{2}(\mathrm{x}+1)^{2}=1 \\
\left(\mathrm{~m}^{2}+1\right) \mathrm{x}^{2}+2 \mathrm{~m}^{2} \mathrm{x}+\left(\mathrm{m}^{2}-1\right)=0, m \in \mathrm{Q} \\
\mathrm{x}=\frac{-2 \mathrm{~m}^{2} \pm \sqrt{4 \mathrm{~m}^{4}-4\left(\mathrm{~m}^{4}-1\right)}}{2\left(\mathrm{~m}^{2}+1\right)}=\frac{-2 \mathrm{~m}^{2} \pm 2}{2\left(\mathrm{~m}^{2}+1\right)} \\
\text { taking }- \text { ve sign } \quad \mathrm{x}=-1(\text { corresponding to } \mathrm{A})
\end{array} \tag{1}
\end{gather*}
$$

with + ve sign $\quad x=\frac{1-\mathrm{m}^{2}}{1+\mathrm{m}^{2}}$
since $\mathrm{m} \in \mathrm{Q}$ hence x will be rational.
If x is rational then y is also rational from (1)]
Q. 8 One side of a rectangle lies along the line $4 x+7 y+5=0$, two of its vertices are $(-3,1)$ and $(1,1)$. Which of the following may be an equation of one of the other three straight lines?
(A*) $7 x-4 y=3$
(B) $7 x-4 y+3=0$
(C) $y+1=0$
(D) $4 x+7 y=3$
[Sol. Equation of line perpendicular to AD is $\mathrm{A}(-3,1)$ lies on $4 \mathrm{x}+7 \mathrm{y}+5=0$

$$
7 x-4 y=\lambda .
$$

It passes through $(1,1)$
$\Rightarrow \quad \lambda=3 \Rightarrow \quad$ (A)]

Q. 9 Three concentric circles of which the biggest is $x^{2}+y^{2}=1$, have their radii in A.P. If the line $y=x+1$ cuts all the circles in real and distinct points. The interval in which the common difference of the A.P. will lie is
(A) $\left(0, \frac{1}{4}\right)$
(B) $\left(0, \frac{1}{2 \sqrt{2}}\right)$
$\left(\mathrm{C}^{*}\right)\left(0, \frac{2-\sqrt{2}}{4}\right)$
(D) none
[Sol.
...1................,,r_{2} and 1
line $y=x+1$
perpendicular from $(0,0)$ on line $y=x+1$

$$
=\frac{1}{\sqrt{2}}
$$

now $\quad r_{1}>\frac{1}{\sqrt{2}} \quad$ but $r_{1}=1-2 d$
hence $\quad 1-2 \mathrm{~d}>\frac{1}{\sqrt{2}} ; \frac{\sqrt{2}-1}{\sqrt{2}}>2 \mathrm{~d} ; \mathrm{d}<\frac{\sqrt{2}-1}{2 \sqrt{2}}$
$\therefore \quad \mathrm{d}=\frac{\sqrt{2}-1}{2 \sqrt{2}}$

Aliter: Equation of circle are

$$
x^{2}+y^{2}=1 ; \quad x^{2}+y^{2}=(1-d)^{2} ; \quad x^{2}+y^{2}=(1-2 d)^{2}
$$

$\Rightarrow \quad$ solve any of circle with line $y=x+1$
e.g. $x^{2}+y^{2}=(1-d)^{2} \Rightarrow 2 x^{2}+2 x+2 d-d^{2}=0$ cuts the circle in real and distinct point hence $\Delta>0$

$$
\left.\Rightarrow \quad 2 \mathrm{~d}^{2}-4 \mathrm{~d}+1>0 \quad \Rightarrow \quad \mathrm{~d}=\frac{2 \pm \sqrt{2}}{4} \quad\right]
$$

[COMPREHENSION TYPE]

Paragraph for question nos. 10 to 12

Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be three sets of real numbers (x, y) defined as

$$
\begin{aligned}
& A:\{(x, y): \quad y \geq 1\} \\
& \text { B: } \left.:(x, y): x^{2}+y^{2}-4 x-2 y-4=0\right\} \\
& C:\{(x, y): x+y=\sqrt{2}\}
\end{aligned}
$$

Q. 10 Number of elements in the $\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}$ is
(A) 0
(B*) 1
(C) 2
(D) infinite
Q. $11(\mathrm{x}+1)^{2}+(\mathrm{y}-1)^{2}+(\mathrm{x}-5)^{2}+(\mathrm{y}-1)^{2}$ has the value equal to
(A) 16
(B) 25
(C*) 36
(D) 49
Q. 12 If the locus of the point of intersection of the pair of perpendicular tangents to the circle B is the curve S then the area enclosed between B and S is
(A) 6π
(B) 8π
(C*) 9π
(D) 18π
[Sol.
(i) refer figure
(ii) when $\mathrm{y}=1$
$\mathrm{x}^{2}-4 \mathrm{x}-5=0$
$(x-5)(x+1)=0$
$\mathrm{x}=-1$ or $\mathrm{x}=5$
$(x+1)^{2}+(y-1)^{2}+(x-5)^{2}+(y-1)^{2}=(Q R)^{2}=36$ Ans.
(iii) equation of director circle is

$$
(x-2)^{2}+(y-1)^{2}=(3 \sqrt{2})^{2}=18
$$

Area $=\pi\left[\mathrm{r}_{1}^{2}-\mathrm{r}_{2}^{2}\right]=\pi[18-9]=9 \pi$ Ans. $]$

[MULTIPLE OBJECTIVE TYPE]

[$2 \times 4=8]$
Q. 13 A circle passes through the points $(-1,1),(0,6)$ and $(5,5)$. The point(s) on this circle, the tangent(s) at which is/are parallel to the straight line joining the origin to its centre is/are :
(A) $(1,-5)$
(B*) $(5,1)$
(C) $(-5,-1)$
(D*) $(-1,5)$
[Hint : Note that Δ is right angled at $(0,6)$. Centre of the circle is $(2,3)$. Slope of the line joining origin to the centre is $3 / 2$. Take parametric equation of a line through $(2,3)$ with
$\tan \theta=-\frac{2}{3}$ as $\frac{\mathrm{x}-2}{\cos \theta}=\frac{\mathrm{y}-3}{\sin \theta}= \pm \mathrm{r}$ where $\mathrm{r}=\sqrt{13}$.
Get the co-ordinates on the circle]
Q. 14 If $\mathrm{a} l^{2}-\mathrm{bm}^{2}+2 \mathrm{~d} l+1=0$, where $\mathrm{a}, \mathrm{b}, \mathrm{d}$ are fixed real numbers such that $\mathrm{a}+\mathrm{b}=\mathrm{d}^{2}$ then the line $l \mathrm{x}+\mathrm{my}+1=0$ touches a fixed circle :
(A^{*}) which cuts the x -axis orthogonally
(B) with radius equal to b
(C) on which the length of the tangent from the origin is $\sqrt{d^{2}-b}$
(D) none of these.
[Hint:

$$
\left(\mathrm{d}^{2}-\mathrm{b}\right) l^{2}+2 \mathrm{~d} l+1=\mathrm{bm}^{2} \Rightarrow \mathrm{~d}^{2} l^{2}+2 \mathrm{~d} l+1=\mathrm{b}\left(l^{2}+\mathrm{m}^{2}\right)
$$

$\Rightarrow\left|\frac{\mathrm{d} \ell+1}{\sqrt{\ell^{2}+\mathrm{m}^{2}}}\right|=(\sqrt{\mathrm{b}})^{2} \Rightarrow$ centre $(\mathrm{d}, 0)$ and radius $\left.\mathrm{b} \Rightarrow(\mathrm{x}-\mathrm{d})^{2}+\mathrm{y}^{2}=(\sqrt{\mathrm{b}})^{2}\right]$
[MATCH THE COLUMN]
Q. 15

Column-I

(A) The equation $x^{x \sqrt{x}}=(x \sqrt{x})^{x}$ has two solutions in positive real numbers x. One obvious solution is $x=1$. The other one is $x=$
(B) Suppose a triangle ABC is inscribed in a circle of radius 10 cm . If the perimeter of the triangle is 32 cm then the value of $\sin \mathrm{A}+\sin \mathrm{B}+\sin \mathrm{C}$ equals

Column-II

(P) $8 / 3$

Sum of infinte terms of the series

$$
\begin{equation*}
1+\frac{3}{4}+\frac{7}{16}+\frac{15}{64}+\frac{31}{256}+\ldots . \text { equals } \tag{S}
\end{equation*}
$$

(D) The sum of $\sum_{\mathrm{r}=1}^{\infty}\left(\frac{\mathrm{r}+3}{\mathrm{r}(\mathrm{r}+1)(\mathrm{r}+2)}\right)$ equals \quad [Ans. (A) Q ; (B) S ; (C) P ; (D) R]
[Sol. (A) Take log on both the sides.
(B) Given $\mathrm{a}+\mathrm{b}+\mathrm{c}=32 ; \quad \mathrm{R}=30 \mathrm{~cm}$

$$
\begin{aligned}
\sum \sin \mathrm{A} & =\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{2 \mathrm{R}} \quad \text { (using sine law) } \\
& =\frac{32}{20}=\frac{8}{5} \quad \text { Ans.] }
\end{aligned}
$$

Q. 16

Column-I

Column-II

(A) If the line $x+2 a y+a=0, x+3 b y+b=0 \& x+4 c y+c=0$ are concurrent, then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in
(B) The points with the co-ordinates (2a, 3a), (3b,2b) \& (c, c)
(Q) G.P. are collinear then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in
(C) If the lines, $a x+2 y+1=0 ; b x+3 y+1=0 \& c x+4 y+1=0$ passes through the same point then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in
(D) Let a, b, c be distinct non-negative numbers. If the lines $\mathrm{ax}+\mathrm{ay}+\mathrm{c}=0, \mathrm{x}+1=0 \& \mathrm{cx}+\mathrm{cy}+\mathrm{b}=0$ pass through the same point then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in
[Ans. (A) R; (B) S; (C) P; (D) Q]
[Sol.(B)

$$
\begin{aligned}
& \left|\begin{array}{lll}
2 \mathrm{a} & 3 \mathrm{a} & 1 \\
3 \mathrm{~b} & 2 \mathrm{~b} & 1 \\
\mathrm{c} & \mathrm{c} & 1
\end{array}\right|=0 \text { solving it we get, } 2 \mathrm{a}(2 \mathrm{~b}-\mathrm{c})-3 \mathrm{a}(3 \mathrm{~b}-\mathrm{c})+1(3 \mathrm{bc}-2 \mathrm{bc})=0 \\
& 4 \mathrm{ab}-2 \mathrm{ac}-9 \mathrm{ab}+3 \mathrm{ac}+3 \mathrm{bc}-2 \mathrm{bc}=0 \\
& -5 \mathrm{ab}+\mathrm{ac}+\mathrm{bc}=0 \\
& \text { or } \left.\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}=\frac{5}{\mathrm{c}} \text { or } \frac{2 \mathrm{ab}}{\mathrm{a}+\mathrm{b}}=\frac{2 \mathrm{c}}{5} \Rightarrow \mathrm{a}, \frac{2 \mathrm{c}}{5}, \text { b in H.P. }\right]
\end{aligned}
$$

[SUBEECTIVE TYPE]

Q. 17 Find the sum of the series $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}++\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots .$. upto 16 terms.
[6]
[Ans. 446]
[Sol. The $\mathrm{r}^{\text {th }}$ term, $\mathrm{t}_{\mathrm{r}}=\frac{1^{3}+2^{3}+3^{3}+\ldots \ldots .+\mathrm{r}^{3}}{1+3+5+\ldots \ldots .+(2 \mathrm{r}-1)}=\left(\frac{\mathrm{r}(\mathrm{r}+1)}{2}\right)^{2} \frac{1}{\mathrm{r}^{2}}=\frac{1}{4}(\mathrm{r}+1)^{2}$

$$
\left.\sum_{\mathrm{r}=1}^{16} \mathrm{t}_{\mathrm{r}}=\frac{1}{4}\left[2^{2}+3^{2}+\ldots \ldots .+17^{2}\right]=\frac{1}{4}\left[\frac{17 \times 18 \times 35}{6}-1\right]=446 \text { Ans. }\right]
$$

Q. 18 Find the number of circles that touch all the three $\operatorname{lines} 2 x-y=5, x+y=3,4 x-2 y=7$.
[Ans. 4]

PRRACTICE TEST \neq

[STRAIGHT OBJECTIVE TYPE]

Q. 1 If the sum of m consecutive odd integers is m^{4}, then the first integer is
(A) $\mathrm{m}^{3}+\mathrm{m}+1$
(B) $m^{3}+m-1$
(C) $m^{3}-m-1$
(D*) $\mathrm{m}^{3}-\mathrm{m}+1$
[Sol. Let $2 \mathrm{a}+1,2 \mathrm{a}+3,2 \mathrm{a}+5, \ldots . . .$. be the A.P.
Sum $=m^{4}=\frac{m}{2}\left[2(2 a+1)+(m-1) 2=m^{4} \quad \Rightarrow \quad 2 a+m=m^{3} ; 2 a+1=m^{3}-m+1\right.$ Ans. $]$
Q. 2 The values of x for which the inequalities $x^{2}+6 x-27>0$ and $-x^{2}+3 x+4>0$ hold simultaneously lie in
(A) $(-1,4)$
(B) $(-\infty,-9) \cup(3, \infty)$
(C) $(-9,-1)$
(D*) $(3,4)$
[Sol. $x^{2}+6 x-27>0 \quad \Rightarrow \quad(x-3)(x+9)>0 \quad \Rightarrow \quad x \in(-\infty,-9) \cup(3, \infty) \quad \ldots .(1)$
$-x^{2}+3 x+4>0 \quad \Rightarrow \quad x^{2}-3 x-4<0 \Rightarrow(x-4)(x+1)<0 \Rightarrow x \in(-1,4)$
The intersection of two sets in $(1),(2)$ is $(3,4)$ Ans.]
Q. 3 The diagonals of the quadrilateral whose sides are $l \mathrm{x}+\mathrm{my}+\mathrm{n}=0, \mathrm{mx}+l \mathrm{y}+\mathrm{n}=0$, $l \mathrm{x}+\mathrm{my}+\mathrm{n}_{1}=0, \mathrm{mx}+l \mathrm{y}+\mathrm{n}_{1}=0$ include an angle
(A) $\frac{\pi}{4}$
(B*) $\frac{\pi}{2}$
(C) $\tan ^{-1}\left(\frac{l^{2}-m^{2}}{l^{2}+m^{2}}\right)$
(D) $\tan ^{-1}\left(\frac{2 l m}{l^{2}+m^{2}}\right)$
Q. 4 In the xy-plane, the length of the shortest path from $(0,0)$ to $(12,16)$ that does not go inside the circle $(x-6)^{2}+(y-8)^{2}=25$ is
(A) $10 \sqrt{3}$
(B) $10 \sqrt{5}$
(C*) $10 \sqrt{3}+\frac{5 \pi}{3}$
(D) $10+5 \pi$
$[$ Sol. Let $\mathrm{O}=(0,0), \mathrm{P}=(6,8)$ and $\mathrm{Q}=(12,16)$.
As shown in the figure the shortest route consists of tangent OT, minor arc TR and tangent RQ.
Since $\mathrm{OP}=10, \mathrm{PT}=5$, and $\angle \mathrm{OTP}=90^{\circ}$,
it follows that $\angle \mathrm{OPT}=60^{\circ}$ and $\mathrm{OT}=5 \sqrt{3}$.
By similar reasoning, $\angle \mathrm{QPR}=60^{\circ}$ and $\mathrm{QR}=5 \sqrt{3}$.
Because O, P and Q are collinear (why?),
$\angle \mathrm{RPT}=60^{\circ}$, so arc TR is of length $\frac{5 \pi}{3}$.

Hence the length of the shortest route is $2(5 \sqrt{3})+\frac{5 \pi}{3}$ Ans.]
Q. 5 If $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \ldots . ., \mathrm{a}_{\mathrm{n}}$ are in A.P. where $\mathrm{a}_{\mathrm{i}}>0$ for all i,
then $\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\ldots . .+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}$ equals
(A) $\frac{1}{\sqrt{a_{1}}+\sqrt{a_{n}}}$
(B) $\frac{n}{\sqrt{a_{1}}+\sqrt{a_{n}}}$
(C) $\frac{n+1}{\sqrt{a_{1}}+\sqrt{a_{n}}}$
(D*) $\frac{n-1}{\sqrt{a_{1}}+\sqrt{a_{n}}}$
[Sol. Let d be the common difference
$\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\ldots \ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}$
$=\frac{\sqrt{a_{2}}-\sqrt{a_{1}}}{d}+\frac{\sqrt{a_{3}}-\sqrt{a_{2}}}{d}+\ldots . .+\frac{\sqrt{a_{n}}-\sqrt{a_{n-1}}}{d}=\frac{\sqrt{a_{n}}-\sqrt{a_{1}}}{d}$, cancelling the terms
$=\frac{\mathrm{a}_{\mathrm{n}}-\mathrm{a}_{1}}{\left(\sqrt{\mathrm{a}_{\mathrm{n}}}+\sqrt{\mathrm{a}_{1}}\right) \mathrm{d}}=\frac{\mathrm{n}-1}{\sqrt{\mathrm{a}_{1}}+\sqrt{\mathrm{a}_{\mathrm{n}}}}$ Ans.]
Q. 6 The equation of a line inclined at an angle $\frac{\pi}{4}$ to the axis X , such that the two circles $x^{2}+y^{2}=4, x^{2}+y^{2}-10 x-14 y+65=0$ intercept equal lengths on it, is
(A*) $2 \mathrm{x}-2 \mathrm{y}-3=0$
(B) $2 x-2 y+3=0$
(C) $x-y+6=0$
(D) $x-y-6=0$
[Sol. Let equation of line be $y=x+c$

$$
\begin{equation*}
y-x=c \tag{1}
\end{equation*}
$$

perpendicular from $(0,0)$ on (1) is $\left|\frac{-\mathrm{c}}{\sqrt{2}}\right|=\frac{\mathrm{c}}{\sqrt{2}}$
In $\triangle \mathrm{AON}, \quad \sqrt{2^{2}-\left(\frac{\mathrm{c}}{\sqrt{2}}\right)^{2}}=\mathrm{AN}$
and in \triangle CPM, $\sqrt{3^{2}-2-\frac{c}{\sqrt{2}}}=\mathrm{CM}$
perpendicular from $(5,7)$ on line $\mathrm{y}-\mathrm{x}=\mathrm{c}=\frac{2-\mathrm{c}}{\sqrt{2}}$
Given $\mathrm{AN}=\mathrm{CM}=4-\frac{\mathrm{c}^{2}}{2}=9-\frac{(2-\mathrm{c})^{2}}{2} \Rightarrow \mathrm{c}=-\frac{3}{2}$
$\therefore \quad$ equation of line $\mathrm{y}=\mathrm{x}-\frac{3}{2}$ of $2 \mathrm{x}-2 \mathrm{y}-3=0$]
Q. 7 If the straight line $y=m x$ is outside the circle $x^{2}+y^{2}-20 y+90=0$, then
(A) $\mathrm{m}>3$
(B) $\mathrm{m}<3$
(C) $|m|>3$
(D*) $|\mathrm{m}|<3$
[Sol. Centre $(0,10)$, radius $\sqrt{10}$.
Distance of $(0,10)$ from $y=m x$ is greater then $\sqrt{10}$ i.e. $\left.\frac{10}{\sqrt{\mathrm{~m}^{2}+1}}>\sqrt{10}<3 \quad\right]$
Q. 8 A line with gradient 2 intersects a line with gradient 6 at the point (40, 30). The distance between x -intercepts of these lines, is
(A) 6
(B) 8
(C*) 10
(D) 12
[Sol. Let C_{1} and C_{2} be the x -intercept of lines with slope 2 and 6 respectively

$$
\begin{array}{ll}
& y-0=2\left(x-c_{1}\right) \\
& y=2 x-2 C_{1} \\
\text { IIlly } & y=6 x-6 C_{2} \tag{2}
\end{array}
$$

both (1) and (2) satisfy $x=40$ and $y=30$

$$
30=80-2 C_{1} \Rightarrow C_{1}=25
$$

and $\quad 30=240-6 \mathrm{C}_{2}$
$\Rightarrow \quad 6 \cdot \mathrm{C}_{2}=210 \Rightarrow \mathrm{C}_{2}=35$
hence $\mathrm{C}_{2}-\mathrm{C}_{1}=10$ Ans.]

[COMPREHENSION TYPE]
 Paragraph for question nos. 9 to 11

Consider a circle $\mathrm{x}^{2}+\mathrm{y}^{2}=4$ and a point $\mathrm{P}(4,2) . \theta$ denotes the angle enclosed by the tangents from P on the circle and A, B are the points of contact of the tangents from P on the circle.
Q. 9 The value of θ lies in the interval
(A) $\left(0,15^{\circ}\right)$
(B) $\left(15^{\circ}, 30^{\circ}\right)$
(C) $30^{\circ}, 45^{\circ}$)
(D*) $\left(45^{\circ}, 60^{\circ}\right)$
Q. 10 The intercept made by a tangent on the x -axis is
(A) $9 / 4$
(B*) $10 / 4$
(C) $11 / 4$
(D) $12 / 4$
Q. 11 Locus of the middle points of the portion of the tangent to the circle terminated by the coordinate axes is
(A*) $\mathrm{x}^{-2}+\mathrm{y}^{-2}=1^{-2}$
(B) $x^{-2}+y^{-2}=2^{-2}$
(C) $x^{-2}+y^{-2}=3^{-2}$
(D) $x^{-2}-y^{-2}=4^{-2}$
[Sol. Tangent

$$
\begin{aligned}
& \mathrm{y}-2=\mathrm{m}(\mathrm{x}-4) \\
& \mathrm{mx}-\mathrm{y}+(2-4 \mathrm{~m})=0 \\
& \mathrm{p}=\left|\frac{2-4 \mathrm{~m}}{\sqrt{1+\mathrm{m}^{2}}}\right|=2 \\
& (1-2 \mathrm{~m})^{2}=1+\mathrm{m}^{2} \\
& 3 \mathrm{~m}^{2}-4 \mathrm{~m}=0 \\
& \mathrm{~m}=0 \quad \text { or } \quad \mathrm{m}=\frac{4}{3}
\end{aligned}
$$

Hence equation of tangent is $\mathrm{y}=2$ and (with infinite intercept on x -axis)
or $\quad y-2=\frac{4}{3}(x-4) \quad \Rightarrow \quad 3 y-6=4 x-16 \quad \Rightarrow \quad 4 x-3 y-10=0$
x -intercept $=\frac{10}{4}$ Ans.(ii) \Rightarrow
Variable line with mid point (h, k)

$$
\begin{aligned}
& \frac{\mathrm{x}}{2 \mathrm{~h}}+\frac{\mathrm{y}}{2 \mathrm{k}}=1, \text { it touches the circle } \mathrm{x}^{2}+\mathrm{y}^{2}=4 \\
\therefore & \left|\frac{-1}{\sqrt{\frac{1}{4 \mathrm{~h}^{2}}+\frac{1}{4 \mathrm{k}^{2}}}}\right|=2 \Rightarrow \frac{1}{4 \mathrm{~h}^{2}}+\frac{1}{4 \mathrm{k}^{2}}=\frac{1}{4} \Rightarrow \text { locus is } \mathrm{x}^{-2}+\mathrm{y}^{-2}=1 \text { Ans.(iii) } \Rightarrow \text { (A)] }
\end{aligned}
$$

Q. 12 Statement-1: The circle $C_{1}: x^{2}+y^{2}-6 x-4 y+9=0$ bisects the circumference of the circle $C_{2}: x^{2}+y^{2}-$

$$
8 x-6 y+23=0
$$

because
Statement-2: Centre of the circle C_{1} lies on the circumference of C_{2}.
(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
(B*) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
(C) Statement- 1 is true, statement- 2 is false.
(D) Statement-1 is false, statement-2 is true.
[Sol. $\quad \mathrm{C}_{1}$: centre $(3,2)$
C_{2} : centre $(4,3)$
radical axis of C_{1} and C_{2} is

$$
\begin{align*}
& C_{1}-C_{2}=0 \\
& 2 x+2 y-14=0 \\
& x+y-7=0 \quad \ldots \tag{1}
\end{align*}
$$

since (1) passes through the centre of $\mathrm{C}_{2}(4,3)$ hence $\mathrm{S}-1$ is correct.
also $(3,2)$ lies on C_{2} hence $\mathrm{S}-2$ is correct but that is not the correct explanation of S -1.]

[MULTIPLE OBJECTIVE TYPE]

Q. 13 Which of the following lines have the intercepts of equal lengths on the circle, $x^{2}+y^{2}-2 x+4 y=0$?
(A*) $3 x-y=0$
(B*) $x+3 y=0$
(C*) $x+3 y+10=0$
(D*) $3 x-y-10=0$
[Hint: Chords equidistance from the centre are equal]
Q. 14 Three distinct lines are drawn in a plane. Suppose there exist exactly n circles in the plane tangent to all the three lines, then the possible values of n is/are
(A*) 0
(B) 1
(C*) 2
(D*) 4
[Sol. Case-1: If lines form a triangle then $\mathrm{n}=4$
i.e. 3 excircles and 1 incircle

Case-2: If lines are concurrent or all 3 parallel then $\mathrm{n}=0$
Case-3: If two are parallel

and third cuts then $\mathrm{n}=2$
hence (A), (C), (D)]
[MATCH THE COLUMN]
$[(3+3+3+3) \times 2=24]$
Q. 15 Consider the line $A x+B y+C=0$.

Match the nature of intercept of the line given in column-I with their corresponding conditions in column-II. The mapping is one to one only.

Column-I

(A) x intercept is finite and y intercept is infinite
(B) x intercept is infinite and y intercept is finite
(C) both x and y intercepts are zero
(D) both x and y intercepts are infinite

Column-II

(P) $\mathrm{A}=0, \mathrm{~B}, \mathrm{C} \neq 0$
(Q) $\mathrm{C}=0, \mathrm{~A}, \mathrm{~B} \neq 0$
(R) $\mathrm{A}, \mathrm{B}=0$ and $\mathrm{C} \neq 0$
(S) $\quad \mathrm{B}=0, \mathrm{~A}, \mathrm{C} \neq 0$
[Ans. (A) S; (B) P; (C) Q; (D) R]
Q. 16

Column I
Column II
(A) If the lines $a x+2 y+1=0, b x+3 y+1=0$ and $c x+4 y+1=0$ passes through the same point, then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in
(B) Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be distinct non-negative numbers.

If the lines $a x+a y+c=0, x+1=0$ and $c x+c y+b=0$ passes through the same point, then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in
(C) If the lines ax $+\mathrm{amy}+1=0, \mathrm{bx}+(\mathrm{m}+1) \mathrm{by}+1=0$
(R) H.P. and $c x+(m+2) c y+1=0$, where $m \neq 0$ are concurrent then a, b, c are in
(D) If the roots of the equation $x^{2}-2(a+b) x+a(a+2 b+c)=0$ be equal then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in
[Ans. (A) P; (B) S; (C) R; (D) Q]
[Hint: (D) Roots equal $\Rightarrow \quad \mathrm{D}=0$
$\therefore \quad 4(a+b)^{2}=4 a(a+2 b+c)$
$\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{ab}=\mathrm{a}^{2}+2 \mathrm{ab}+\mathrm{ac}$
$\therefore \quad \mathrm{b}^{2}=\mathrm{ac} \quad \Rightarrow \quad \mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P. $\left.\Rightarrow(\mathrm{Q})\right]$

[SUBJECTIVE TYPE]

Q. 17 If S_{1}, S_{2}, S_{3} are the sum of $n, 2 n, 3 n$ terms respectively of an A.P. then find the value of $\frac{S_{3}}{\left(S_{2}-S_{1}\right)}$.
[6]
[Ans. 3]
[Sol. $\quad S_{1}=\frac{n}{2}[2 a+(n-1) d] ; \quad S_{2}=n[2 a+(2 n-1) d]$
$S_{2}-S_{1}=n a+(3 n-1) \frac{n d}{2}=\frac{n}{2}[2 a+(3 n-1) d]$
$S_{3}=\frac{3 n}{2}[2 a+(3 n-1) d]$
$\therefore \quad \frac{\mathrm{S}_{3}}{\left(\mathrm{~S}_{2}-\mathrm{S}_{1}\right)}=3$ Ans.]
Q. 18 Find the distance of the centre of the circle $x^{2}+y^{2}=2 x$ from the common chord of the circles $\mathrm{x}^{2}+\mathrm{y}^{2}+5 \mathrm{x}-8 \mathrm{y}+1=0$ and $\mathrm{x}^{2}+\mathrm{y}^{2}-3 \mathrm{x}+7 \mathrm{y}+25=0$.
[Ans. 2]
[6]
[Sol. The common chord is $8 \mathrm{x}-15 \mathrm{y}+26=0$
Distance of $(1,0)$ is $\frac{8+26}{\sqrt{8^{2}+15^{2}}}=\frac{34}{17}=2$ Ans.]

PRRACTMCETEEST \neq

[STRAIGHT OBJECTIVE TYPE]
Q. 1 Suppose that two circles C_{1} and C_{2} in a plane have no points in common. Then
(A) there is no line tangent to both C_{1} and C_{2}.
(B) there are exactly four lines tangent to both C_{1} and C_{2}.
(C) there are no lines tangent to both C_{1} and C_{2} or there are exactly two lines tangent to both C_{1} and C_{2}.
(D*) there are no lines tangent to both C_{1} and C_{2} or there are exactly four lines tangent to both C_{1} and C_{2}.
[Hint:

Q. 2 If $\cos (x-y), \cos x, \cos (x+y)$ are in H.P., then the value of $\cos x \sec \frac{y}{2}$ is
(A) ± 1
(B) $\pm \frac{1}{\sqrt{2}}$
$\left(C^{*}\right) \pm \sqrt{2}$
(D) $\pm \sqrt{3}$
[Sol. $\cos (x-y), \cos x, \cos (x+y)$ are in H.P.
$\therefore \quad \cos x=\frac{2 \cos (x-y) \cos (x+y)}{\cos (x-y)+\cos (x+y)}=\frac{\cos ^{2} x-\sin ^{2} y}{\cos x \cos y}$
$\Rightarrow \quad \sin ^{2} y=\cos ^{2} x(1-\cos y)=2 \cos ^{2} x \sin ^{2} \frac{y}{2}$
$\Rightarrow \quad 4 \sin ^{2} \frac{y}{2} \cos ^{2} \frac{y}{2}=2 \cos ^{2} x \sin ^{2} \frac{y}{2} \quad \Rightarrow \quad \cos ^{2} x=2 \cos ^{2} \frac{y}{2} \quad \Rightarrow \quad \cos ^{2} x \sec ^{2} \frac{y}{2}=2$
$\Rightarrow \quad \cos \mathrm{xsec} \frac{\mathrm{y}}{2}= \pm \sqrt{2}$ Ans.]
Q. 3 The shortest distance from the line $3 x+4 y=25$ to the circle $x^{2}+y^{2}=6 x-8 y$ is equal to
(A*) $7 / 5$
(B) $9 / 5$
(C) $11 / 5$
(D) $32 / 5$
[Sol. Centre: $(3,-4)$ and $r=5$ perpendicular distance from $(3,-4)$ on

$$
\begin{gathered}
3 \mathrm{x}+4 \mathrm{y}-25=0 \text { is } \\
\mathrm{p}=\left|\frac{9-16-25}{5}\right|=\frac{32}{5} \\
\mathrm{~d}=\frac{32}{5}-5=\frac{7}{5} \text { Ans.] }
\end{gathered}
$$

Q. 4 The expression $\mathrm{a}\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)$ - bxy admits of two linear factors for
(A) $a+b=0$
(B) $a=b$
(C) $4 a=b^{2}$
(D*) all a and b.
[Sol. The expression $a x^{2}+b x y+c y^{2}$ is the product of two linear factors if and only if the discriminant ≥ 0.
The discriminant of $a x^{2}-b x y-a y^{2}$ is $b^{2}+4 a^{2} \geq 0$.
The discriminant of $a x^{2}-b x y-a y^{2}$ is $b^{2}+4 a^{2} \geq 0$ for all a and b.]
Q. 5 The points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right),\left(\mathrm{x}_{1}, \mathrm{y}_{2}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{1}\right)$ are always :
(A) collinear
(B*) concyclic
(C) vertices of a square
(D) vertices of a rhombus
[Hint: All the points lie on the circle $\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)=0$]
Q. 6 If $x=\sum_{n=0}^{\infty} a^{n}, y=\sum_{n=0}^{\infty} b^{n}, z=\sum_{n=0}^{\infty} c^{n}$
where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. and $|\mathrm{a}|<1,|\mathrm{~b}|<1,|\mathrm{c}|<1$, then $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in
(A) A.P.
(B) G.P.
(C*) H.P.
(D) A.G.P.
[Sol. $x=1+a+a^{2}+\ldots \ldots \infty \Rightarrow x=\frac{1}{1-a} ; \quad$ Illly $\quad y=\frac{1}{1-b}, z=\frac{1}{1-c}$
$\Rightarrow \quad 1-\mathrm{a}=\frac{1}{\mathrm{x}}, 1-\mathrm{b}=\frac{1}{\mathrm{y}}, 1-\mathrm{c}=\frac{1}{\mathrm{z}}$

$$
\mathrm{a}=1-\frac{1}{\mathrm{x}}, \mathrm{~b}=1-\frac{1}{\mathrm{y}}, \mathrm{c}=1-\frac{1}{\mathrm{z}}
$$

a, b, c are in A.P $\Rightarrow 1-\frac{1}{x}, 1-\frac{1}{y}, 1-\frac{1}{z}$ are in A.P. $\Rightarrow \frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in A.P.
$\Rightarrow \quad \mathrm{x}, \mathrm{y}, \mathrm{z}$ are in H.P.]
Q. 7 Tangents are drawn from any point on the circle $x^{2}+y^{2}=R^{2}$ to the circle $x^{2}+y^{2}=r^{2}$. If the line joining the points of intersection of these tangents with the first circle also touch the second, then R equals
(A) $\sqrt{2} r$
(B*) 2 r
(C) $\frac{2 r}{2-\sqrt{3}}$
(D) $\frac{4 \mathrm{r}}{3-\sqrt{5}}$
[HInt:

]
Q. 8 The greatest slope along the graph represented by the equation $4 x^{2}-y^{2}+2 y-1=0$, is
(A) -3
(B) -2
(C*) 2
(D) 3
[Hint: $\quad y^{2}-2 y+1=4 x^{2}$
$(y-1)=2 x \quad$ or $-2 x$
$y=2 x+1 \quad$ or $\quad y=1-2 x$
greatest slope $=2$ Ans.]
Q. 9 The locus of the center of the circles such that the point $(2,3)$ is the mid point of the chord $5 x+2 y=16$ is
(A*) $2 x-5 y+11=0$
(B) $2 x+5 y-11=0$
(C) $2 x+5 y+11=0$
(D) none
[Hint: Slope of the given line $=-5 / 2$

$$
\begin{aligned}
& \Rightarrow-\frac{5}{2} \cdot \frac{3+f}{2+g}=-1 \Rightarrow 15+5 f=4+2 g \\
& \Rightarrow \text { locus is } 2 x-5 y+11=0]
\end{aligned}
$$

Q. 10 The number of distinct real values of λ, for which the determinant $\left|\begin{array}{ccc}-\lambda^{2} & 1 & 1 \\ 1 & -\lambda^{2} & 1 \\ 1 & 1 & -\lambda^{2}\end{array}\right|$ vanishes, is
(A) 0
(B) 1
(C*) 2
(D) 3
[Sol. $\quad n_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$
$\left(2-\lambda^{2}\right)\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -\lambda^{2} & 1 \\ 1 & 1 & -\lambda^{2}\end{array}\right|=0$
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{2}$ and $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{3}$
$\left(2-\lambda^{2}\right)\left|\begin{array}{ccc}0 & 0 & 1 \\ 1+\lambda^{2} & -\lambda^{2}-1 & 1 \\ 0 & 1+\lambda^{2} & -\lambda^{2}\end{array}\right|=0 \Rightarrow \quad\left(2-\lambda^{2}\right)\left[1+\lambda^{2}\right]^{2}=0$
$\therefore \quad \lambda^{2}=2 \Rightarrow \lambda= \pm \sqrt{2} \Rightarrow$ two values of $\left.\lambda\right]$

[COMPREHENSION TYPE]

Paragraph for questions nos. 11 to 13

Consider the two quadratic polynomials

$$
C_{a}: y=\frac{x^{2}}{4}-a x+a^{2}+a-2 \quad \text { and } \quad C: y=2-\frac{x^{2}}{4}
$$

Q. 11 If the origin lies between the zeroes of the polynomial C_{a} then the number of integral value(s) of ' a ' is
(A) 1
(B*) 2
(C) 3
(D) more than 3
Q. 12 If 'a' varies then the equation of the locus of the vertex of C_{a}, is
(A^{*}) $\mathrm{x}-2 \mathrm{y}-4=0$
(B) $2 x-y-4=0$
(C) $x-2 y+4=0$
(D) $2 x+y-4=0$
Q. 13 For $\mathrm{a}=3$, if the lines $\mathrm{y}=\mathrm{m}_{1} \mathrm{x}+\mathrm{c}_{1}$ and $\mathrm{y}=\mathrm{m}_{2} \mathrm{x}+\mathrm{c}_{2}$ are common tangents to the graph of C_{a} and C then the value of $\left(m_{1}+m_{2}\right)$ is equal to
(A) -6
$\left(B^{*}\right)-3$
(C) $1 / 2$
(D) none
[Sol. $y=f(x)=\frac{x^{2}}{4}-a x+a^{2}+a-2$
(i) for zeroes to be on either side of origin
$\mathrm{f}(0)<0$

$\mathrm{a}^{2}+\mathrm{a}-2<0 \Rightarrow(\mathrm{a}+2)(\mathrm{a}-1)<0 \Rightarrow-2<\mathrm{a}<1 \Rightarrow 2$ integers i.e. $\{-1,0\} \Rightarrow(\mathbf{B})$
(ii) Vertex of C_{a} is (2a, a-2)
hence $\mathrm{h}=2 \mathrm{a}$ and $\mathrm{k}=\mathrm{a}-2$

$$
\mathrm{h}=2(\mathrm{k}+2)
$$

locus $x=2 y+4 \Rightarrow x-2 y-4=0$ Ans.
(iii) Let $y=m x+c$ is a common tangent to $y=\frac{x^{2}}{4}-3 x+10 \quad$....(1) (for $\mathrm{a}=3$)
and $\quad y=2-\frac{x^{2}}{4} \quad \ldots .(2) \quad$ where $m=m_{1}$ or m_{2} and $c=c_{1}$ or c_{2}
solving $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ with (1)

$$
m x+c=\frac{x^{2}}{4}-3 x+10
$$

or $\quad \frac{x^{2}}{4}-(m+3) x+10-c=0$

$$
\mathrm{D}=0 \text { gives }
$$

$$
\begin{equation*}
(\mathrm{m}+3)^{2}=10-\mathrm{c} \quad \Rightarrow \quad \mathrm{c}=10-(\mathrm{m}+3)^{2} \tag{3}
\end{equation*}
$$

Illly $m x+c=2-\frac{x^{2}}{4} \quad \Rightarrow \quad \frac{x^{2}}{4}+m x+c-2=0$

$$
\begin{align*}
& \mathrm{D}=0 \text { gives } \\
& \mathrm{m}^{2}=\mathrm{c}-2 \quad \Rightarrow \quad \mathrm{c}=2+\mathrm{m}^{2} \tag{4}
\end{align*}
$$

from (3) and (4)

$$
\begin{aligned}
& 10-(\mathrm{m}+3)^{2}=2+\mathrm{m}^{2} \Rightarrow \quad 2 \mathrm{~m}^{2}+6 \mathrm{~m}+1=0 \\
\Rightarrow \quad & \left.\mathrm{~m}_{1}+\mathrm{m}_{2}=-\frac{6}{2}=-3 \text { Ans. }\right]
\end{aligned}
$$

[REASONING TYPE]
Q. 14 Statement-1: Angle between the tangents drawn from the point $\mathrm{P}(13,6)$ to the circle $S: x^{2}+y^{2}-6 x+8 y-75=0$ is 90°.

because

Statement-2: Point P lies on the director circle of S.
(A*) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
(B) Statement-1 is true, statement- 2 is true and statement- 2 is NOT the correct explanation for statement- 1 .
(C) Statement- 1 is true, statement- 2 is false.
(D) Statement-1 is false, statement-2 is true.
[Hint: Equation of director's circle is $(x-3)^{2}+(y+4)^{2}=200$ and point $(13,6)$ satisfies the given circle $\left.(x-3)^{2}+(y+4)^{2}=100\right]$

[MULTIPLE OBJECTIVE TYPE]

Q. 15 The fourth term of the A.G.P. $6,8,8, \ldots .$. , is
(A*) 0
(B) 12
(C) $\frac{32}{3}$
(D*) $\frac{64}{9}$
[Sol. $\quad 6,(6+\mathrm{d}) \mathrm{r},(6+2 \mathrm{~d}) \mathrm{r}^{2},(6+3 \mathrm{~d}) \mathrm{r}^{3}$ are in A.G.P.
$(6+d) r=8,(6+2 d) r^{2}=8$
Eliminating $\mathrm{r},(6+\mathrm{d})^{2}=8(6+2 \mathrm{~d})$
$\Rightarrow \quad \mathrm{d}^{2}-4 \mathrm{~d}-12=0 \quad \Rightarrow \quad \mathrm{~d}=-2,6$
$\mathrm{d}=-2 \Rightarrow \mathrm{r}=2, \mathrm{t}_{4}=(6+3 \mathrm{~d}) \mathrm{r}^{3}=0$ Ans.
$\left.\mathrm{d}=6 \Rightarrow \mathrm{r}=\frac{2}{3}, \mathrm{t}_{4}=6+3 \mathrm{~d}\right) \mathrm{r}^{3}=24 \times \frac{8}{27}=\frac{64}{9}$ Ans. $]$
Q. $16 \frac{8 x^{2}+16 x-51}{(2 x-3)(x+4)}>3$ if
(A*) $x<-4$
(B*) $\mathrm{x}>\frac{5}{2}$
(C) $-1<x<1$
(D*) $-3<x<\frac{3}{2}$
[Sol. $\frac{8 x^{2}+16 x-51}{(2 x-3)(x+4)}>3 \Rightarrow \frac{2 x^{2}+x-15}{(2 x-3)(x+4)}=\frac{(x+3)(2 x-5)}{(2 x-3)(x+4)}>0$
Multiplying by $(2 x-3)^{2}(x+4)^{2}$,

$$
\begin{aligned}
& (x+3)(2 x-5)(2 x-3)(x+4)^{2}>0 \\
& \begin{array}{l|llll}
\mathrm{P} & \mathrm{~N} & \mathrm{P} & \mathrm{~N} & \mathrm{P} \\
\hline-4 & -3 & 3 / 2 & 5 / 2
\end{array} \\
& \left.\therefore \quad \mathrm{x} \in(-\infty,-4) \cup\left(-3, \frac{3}{2}\right) \cup\left(\frac{5}{2}, \infty\right)\right]
\end{aligned}
$$

[MATCH THE COLUMN]

Q. 17

Column-I

(A) The lines $y=0 ; y=1 ; x-6 y+4=0$ and $x+6 y-9=0$ constitute a figure which is
(B) The points $\mathrm{A}(\mathrm{a}, 0), \mathrm{B}(0, \mathrm{~b}), \mathrm{C}(\mathrm{c}, 0)$ and $\mathrm{D}(0, \mathrm{~d})$ are
(Q) a rhombus such that $\mathrm{ac}=\mathrm{bd}$ and $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are all non-zero.
The points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D always constitute
(C) The figure formed by the four lines
(R) a square $a x \pm b y \pm c=0(a \neq b)$, is
(D) The line pairs $x^{2}-8 x+12=0$ and $y^{2}-14 y+45=0$
(S) a trapezium constitute a figure which is
[Ans. (A) P, S; (B) P; (C) Q; (D) P, Q, R]
[Sol.
(A) obviously trapezium

$$
\left.\begin{array}{l}
a=\sqrt{37} \\
b=\sqrt{37}
\end{array}\right] \quad \Rightarrow \quad a=b
$$

hence isosceles trapezium
\Rightarrow a cyclic quadrilateral also $\quad \Rightarrow \quad \mathbf{P}, \mathbf{S}$
(B) $\quad \mathrm{ac}=\mathrm{bd} \quad \Rightarrow \quad \frac{\mathrm{b}}{\mathrm{c}}=\frac{\mathrm{a}}{\mathrm{d}}$
$\left.\begin{array}{l}\tan \theta=\frac{\mathrm{b}}{\mathrm{c}} \\ \tan \phi=\frac{\mathrm{a}}{\mathrm{d}}\end{array}\right] \Rightarrow \theta=\phi$

hence cyclic quadrilateral $\quad \Rightarrow \quad \mathbf{P}$
(C) $\mathrm{ax} \pm \mathrm{by} \pm \mathrm{c}=0$
if $y=0, \quad x= \pm \frac{c}{a}$
if $x=0, y= \pm \frac{c}{b}$
\Rightarrow rhombus $\quad \Rightarrow \quad \mathbf{Q}$

(D) $\quad(x-6)(x-2)=0$
$x=6$ and $x=2$
$y^{2}-14 y+45=0$
$(y-9)(y-5)=0$
$\Rightarrow \quad$ a square $\quad \Rightarrow \quad \mathbf{P}, \mathbf{Q}, \mathbf{R}]$

[SUBUECTIVE TYPE]

Q. 18 If the variable line $3 x-4 y+k=0$ lies between the circles $x^{2}+y^{2}-2 x-2 y+1=0$ and $x^{2}+y^{2}-16 x-2 y+61=0$ without intersecting or touching either circle, then the range of k is (a, b) where $a, b \in I$. Find the value of $(b-a)$.
[Ans. 6]
[6]
[Sol. The given circle are
$\mathrm{C}_{1}:(\mathrm{x}-1)^{2}+(\mathrm{y}-1)^{2}=1$
and $\quad C_{2}:(x-8)^{2}+(y-1)^{2}=4$
The given line $\mathrm{L}: 3 \mathrm{x}-4 \mathrm{y}+\mathrm{k}=0$ will lie between these circles if centres of the circles lie on opposite sides of the line,
i.e. $\quad(3 \cdot 1-4 \cdot 1+\mathrm{k})(3 \cdot 8-4 \cdot 1+\mathrm{k})<0 \Rightarrow(\mathrm{k}-1)(\mathrm{k}+20)<0 \Rightarrow \mathrm{k} \in(-20,1)$

Also, the line L will neither touch nor intersect the circle if length of perpendicular drawn from centre to $\mathrm{L}>$ corresponding radius

$$
\begin{array}{lll}
\therefore & \text { for } \mathrm{C}_{1}: \frac{|3 \cdot 1-4 \cdot 1+\mathrm{k}|}{5}>1 \Rightarrow & \frac{|\mathrm{k}-1|}{5}>1 \\
\Rightarrow & \mathrm{k}-1>5 & \text { or } \quad \mathrm{k}-1<-5 \\
\Rightarrow & \mathrm{k}>6 & \text { or } \\
\mathrm{k}<-4
\end{array}
$$

and for $\mathrm{C}_{2}: \frac{|3 \cdot 8-4 \cdot 1+\mathrm{k}|}{5}>2 \Rightarrow \frac{|\mathrm{k}+20|}{5}>2$
$\Rightarrow \quad \begin{array}{lll}\mathrm{k}+20>10 & \text { or } & \mathrm{k}+20<-10 \\ \mathrm{k}>-10 & \text { or } & \mathrm{k}<-30\end{array}$

$\Rightarrow \quad \mathrm{k} \in(-10,-4) \Rightarrow \mathrm{a}=-10$ and $\mathrm{b}=-4$
$\Rightarrow \quad \mathrm{b}-\mathrm{a}=-4+10=6$ Ans.]

PrRACTMCE TEST \ddagger 4

[STRAIGHT OBJECTIVE TYPE]

Q. 1 If the product of n positive number is unity, then their sum is
(A) a positive
(B) divisible by n
(C) $\mathrm{n}+\frac{1}{\mathrm{n}}$
(D*) never less than n
[Sol. Let the number be $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots . . \mathrm{x}_{\mathrm{n}}$
The A.M. of these numbers \geq their G.M.

$$
\left.\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots \ldots+\mathrm{x}_{\mathrm{n}}}{\mathrm{n}} \geq\left(\mathrm{x}_{1} \mathrm{x}_{2} \ldots . \mathrm{x}_{\mathrm{n}}\right)^{\frac{1}{n}}=1 \quad \Rightarrow \quad \mathrm{x}_{1}+\mathrm{x}_{2}+\ldots \ldots .+\mathrm{x}_{\mathrm{n}} \geq \mathrm{n}\right]
$$

Q. 2 If the angle between the tangents drawn from P to the circle $x^{2}+y^{2}+4 x-6 y+9 \sin ^{2} \alpha+13 \cos ^{2} \alpha=0$ is 2α, then the locus of P is
(A) $x^{2}+y^{2}+4 x-6 y+14=0$
(B) $x^{2}+y^{2}+4 x-6 y-9=0$
(C) $x^{2}+y^{2}+4 x-6 y-4=0$
(D*) $x^{2}+y^{2}+4 x-6 y+9=0$
[Sol. $\quad \mathrm{C}(-2,3) ; \mathrm{R}^{2}=4+9-9 \sin ^{2} \alpha-13 \cos ^{2} \alpha=4 \sin ^{2} \alpha$
$\mathrm{R}=2 \sin \alpha$
Now use $\sin \alpha=\frac{2 \sin \alpha}{\mathrm{CP}} \Rightarrow$ Result.]

Q. 3 A point $P(x, y)$ moves such that the sum of its distances from the line $2 x+y=1$ and $x+2 y=1$ is 1 . The locus of P is
(A*) a rectangle
(B) square
(C) parallelogram
(D) rhombus
[Sol. $\left|\frac{2 h+k-1}{\sqrt{5}}\right|+\left|\frac{h+2 k-1}{\sqrt{5}}\right|=1$
$|2 \mathrm{~h}+\mathrm{k}-1|+|\mathrm{h}+2 \mathrm{k}-1|=\sqrt{5}$, now take 4 case an interpret.]
Q. 4 Let the H.M. and G.M. of two positive numbers a and b in the ratio $4: 5$ then $\mathrm{a}: \mathrm{b}$ is
(A) $1: 2$
(B) $2: 3$
(C) $3: 4$
(D*) $1: 4$
[Sol. H.M. $=\frac{2 \mathrm{ab}}{\mathrm{a}+\mathrm{b}}$, G.M. $=\sqrt{\mathrm{ab}}$
$\frac{\text { H.M. }}{\text { G.M. }}=\frac{2 \sqrt{\mathrm{ab}}}{\mathrm{a}+\mathrm{b}}=\frac{4}{5} \quad$ (Given)
$25 a b=4(a+b)^{2} \quad \Rightarrow \quad 4 a^{2}-17 a b+4 b^{2}=0$
$(4 \mathrm{a}-\mathrm{b})(\mathrm{a}-4 \mathrm{~b})=0 \quad \Rightarrow \quad 4 \mathrm{a}=\mathrm{b} \Rightarrow \quad \mathrm{a}: \mathrm{b}=1: 4$ Ans.]
Q. 5 If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are odd integers, then the equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ cannot have
(A) imaginary roots
(B) real root
(C) irrational root
(D*) rational root
[Sol. Let $\mathrm{x}=\frac{\mathrm{m}}{\mathrm{n}}, \mathrm{m}, \mathrm{n}$ integers $\mathrm{n} \neq 0$, be a root
Then $\mathrm{am}^{2}+\mathrm{bmn}+\mathrm{cn}^{2}=0$
m, n are odd $\quad \Rightarrow \quad$ odd + odd + odd $=0$
m is odd, n is even $\quad \Rightarrow \quad$ odd + even + even $=0$
m is even, n is odd $\quad \Rightarrow \quad$ even + even $+\mathrm{odd}=0$
leading to a contradiction
$\therefore \quad$ there is no rational root.]
Q. 6 If two distinct chords, drawn from the point (p, q) on the circle $x^{2}+y^{2}=p x+q y$, where $p q \neq 0$, are bisected by the x -axis, then
(A) $\mathrm{p}^{2}=\mathrm{q}^{2}$
(B) $\mathrm{p}^{2}=8 \mathrm{q}^{2}$
(C) $\mathrm{p}^{2}<9 \mathrm{q}^{2}$
(D*) $\mathrm{p}^{2}>8 \mathrm{q}^{2}$
[Sol. Let $(\alpha, 0)$ be the midpoint of the chord. The other end of the chord is $(2 \alpha-q,-q)$ which lies on the circle.
$\Rightarrow(2 \alpha-\mathrm{p},-\mathrm{p})^{2}+\mathrm{q}^{2}=\mathrm{p}(2 \alpha-\mathrm{p})-\mathrm{q}^{2}$
$\Rightarrow 2 \alpha^{2}-3 \mathrm{p} \alpha,+\mathrm{p}^{2}+\mathrm{q}^{2}=0$
For two values of a , we have
$9 p^{2}>8\left(p^{2}+q^{2}\right)$ or $\left.p^{2}>8 q^{2} \quad\right]$
Q. 7 Locus of the middle points of a system of parallel chords with slope 2, of the circle $x^{2}+y^{2}-4 x-2 y-4=0$, has the equation
(A*) $x+2 y-4=0$
(B) $x-2 y=0$
(C) $2 x-y-3=0$
(D) $2 x+y-5=0$
[Hint: Locus will be a line with slope $-1 / 2$ and passing through the centre $(2,1)$ of the circle

$$
\begin{aligned}
& y-1=-\frac{1}{2}(x-2) \\
& 2 y-2=-x+2 \quad \Rightarrow \quad x+2 y-4=0 \text { Ans. }]
\end{aligned}
$$

Q. $8 \quad \mathrm{~A}(1,2), \mathrm{B}(-1,5)$ are two vertices of a triangle whose are is 5 units. If the third vertex C lies on the line $2 \mathrm{x}+\mathrm{y}=1$, then C is
(A) $(0,1)$ or $(1,21)$
(B*) $(5,-9)$ or $(-15,31)$
(C) $(2,-3)$ or $(3,-5)$
(D) $(7,-13)$ or $(-7,15)$
[Sol. A(1, 2) ; B ($-1,5$)
C point $(\alpha, 1-2 \alpha)$
$|\mathrm{AB}|=\sqrt{13}$
$(y-2)=\frac{3}{-2}(x-1) \quad \Rightarrow \quad 3 x+2 y-7=0$
$|\mathrm{CD}|=\frac{|3 \alpha+2(1-2 \alpha)-7|}{\sqrt{13}}=\frac{|-\alpha-5|}{\sqrt{13}}$

$\left|\frac{1}{2}\right| \mathrm{CD}|\times|\mathrm{AB}||=5 \Rightarrow \quad \frac{1}{2} \frac{|\alpha+5|}{\sqrt{13}} \times \sqrt{13}=5 \Rightarrow \quad|\alpha+5|=10 \Rightarrow \alpha=5$ or -15
$C \rightarrow(5,-9)$ or $(-15,31)$ Ans.]
Q. 9 The distance of the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ from each of the two straight lines through the origin is d . The equation of the two straight lines is
(A*) $\left(x y_{1}-y x_{1}\right)^{2}=d^{2}\left(x^{2}+y^{2}\right)$
(B) $d^{2}\left(x_{1}-y_{1}\right)^{2}=x^{2}+y^{2}$
(C) $\left.d^{2}\left(\mathrm{xy}_{1}+\mathrm{yx}\right)_{1}\right)^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}$
(D) $\left(\mathrm{xy}_{1}+\mathrm{yx}_{1}\right)^{2}=\mathrm{d}^{2}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$
[Sol. Let $\mathrm{R}(\mathrm{h}, \mathrm{k})$ be any point on OM
Area of $\Delta \mathrm{OPR}=\frac{1}{2}\left|\begin{array}{ccc}\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{~h} & \mathrm{k} & 1 \\ 0 & 0 & 1\end{array}\right|=\frac{1}{2}\left|\left(\mathrm{kx}_{1}-\mathrm{hy}_{1}\right)\right|$

> also $\quad \ldots . . \Delta \mathrm{OPR}=\frac{\sqrt{\mathrm{h}^{2}+\mathrm{k}^{2}} \cdot \mathrm{~d}}{2}$
> $\therefore \quad \frac{1}{2}\left|\left(\mathrm{kx}_{1}-\mathrm{hy}_{1}\right)\right|=\frac{\sqrt{\mathrm{h}^{2}+\mathrm{k}^{2}} \cdot \mathrm{~d}}{2}$
locus of (h, k) is

$$
\left(\mathrm{xy}_{1}-\mathrm{yx}_{1}\right)^{2}=\mathrm{d}^{2}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \text { Ans. }
$$

Alternatively: Let the line through $(0,0)$ be $y=m x$
$\therefore \quad \mathrm{d}=\left|\frac{\mathrm{mx}_{1}-\mathrm{y}_{1}}{\sqrt{1+\mathrm{m}^{2}}}\right|=\mathrm{m}^{2}\left(\mathrm{x}_{1}^{2}-\mathrm{d}^{2}\right)-2 \mathrm{mx}_{1} \mathrm{y}_{1}+\mathrm{y}_{1}^{2}-\mathrm{d}^{2}=0$
replacing m by y / x

$$
\begin{aligned}
& \mathrm{x}^{2}\left(\mathrm{y}_{1}^{2}-\mathrm{d}^{2}\right)-2 \mathrm{xy} \mathrm{x}_{1} \mathrm{y}_{1}+\mathrm{y}^{2}\left(\mathrm{x}_{1}^{2}-\mathrm{d}^{2}\right)=0 \\
& \left.\left(\mathrm{xy}_{1}-\mathrm{yx}_{1}\right)^{2}=\mathrm{d}^{2}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \text { Ans. }\right]
\end{aligned}
$$

Q. 10 Area of the triangle formed by the line $x+y=3$ and the angle bisectors of the line pair $x^{2}-y^{2}+4 y-4=0$ is
(A*) $1 / 2$
(B) 1
(C) $3 / 2$
(D) 2
[Sol. $\quad x^{2}-\left(y^{2}-4 y+4\right)=0$
$\Rightarrow \quad x^{2}-(y-2)^{2}=0$
$\Rightarrow \quad(x+y-2)(x-y+2)=0$
Area $=\frac{1 \cdot 1}{2}=\frac{1}{2}$ Ans.]

[COMPREHENSION TYPE]

Paragraph for Question Nos. 11 to 13

Consider a general equation of degree 2 , as

$$
\lambda x^{2}-10 x y+12 y^{2}+5 x-16 y-3=0
$$

Q. 11 The value of ' λ ' for which the line pair represents a pair of straight lines is
(A) 1
(B*) 2
(C) $3 / 2$
(D) 3
Q. 12 For the value of λ obtained in above question, if $L_{1}=0$ and $L_{2}=0$ are the lines denoted by the given line pair then the product of the abscissa and ordinate of their point of intersection is
(A) 18
(B) 28
(C*) 35
(D) 25
Q. 13 If θ is the acute angle between $\mathrm{L}_{1}=0$ and $\mathrm{L}_{2}=0$ then θ lies in the interval
(A) $\left(45^{\circ}, 60^{\circ}\right)$
(B) $\left(30^{\circ}, 45^{\circ}\right)$
(C) $\left(15^{\circ}, 30^{\circ}\right)$
(D*) $\left(0,15^{\circ}\right)$
[Sol.
(i) $\mathrm{a}=\lambda ; \mathrm{h}=-5 ; \mathrm{b}=12 ; \mathrm{g}=\frac{5}{2} ; \mathrm{f}=-8, \mathrm{c}=-3$
$\lambda(12)(-3)+2(-8)\left(\frac{5}{2}\right)(-5)-\lambda(64)-\left(\frac{25}{4}\right) \cdot 12+3 \cdot 25=0$
$-36 \lambda+200-64 \lambda-75+75=0 \quad \Rightarrow \quad 100 \lambda=200 \quad \Rightarrow \quad \lambda=2$ Ans.
(ii) $2 \mathrm{x}^{2}-10 \mathrm{xy}+12 \mathrm{y}^{2}+5 \mathrm{x}-16 \mathrm{y}-3=0$
consider the homogeneous part
$2 x^{2}-10 x y+12 y^{2}$
$2 x^{2}-6 x y-4 x y+12 y^{2}$ or $2 x(x-3 y)-4 y(x-3 y) \quad$ or $\quad(x-3 y)(x-2 y)$
$\therefore \quad 2 \mathrm{x}^{2}-10 \mathrm{xy}+12 \mathrm{y}^{2}+5 \mathrm{x}-16 \mathrm{y}-3 \equiv(2 \mathrm{x}-6 \mathrm{y}+\mathrm{A})(\mathrm{x}-2 \mathrm{y}+\mathrm{B})$
solving $\mathrm{A}=-1 ; \mathrm{B}=3$
hence lines are $2 x-6 y-1=0$ and $x-2 y+3=0$
solving intersection point $\left(-10,-\frac{7}{2}\right)$
$\therefore \quad$ product $=35$ Ans.
$\tan \theta=\frac{2 \sqrt{\mathrm{~h}^{2}-\mathrm{ab}}}{\mathrm{a}+\mathrm{b}}=\frac{2 \sqrt{25-24}}{14}=\frac{1}{7} \quad \Rightarrow \quad \theta \in\left(0,15^{\circ}\right)$ Ans. $]$
[REASONING TYPE]
$[1 \times 3=3]$
Q. 14 A circle is circumscribed about an equilateral triangle ABC and a point P on the minor arc joining A and B, is chosen. Let $x=P A, y=P B$ and $z=P C$. (z is larger than both x and y.)
Statement-1: Each of the possibilities $(\mathrm{x}+\mathrm{y})$ greater than z , equal to z or less than z is possible for some P.

because

Statement-2: In a triangle $A B C$, sum of the two sides of a triangle is greater than the third and the third side is greater than the difference of the two.
(A) Statement- 1 is true, statement- 2 is true and statement- 2 is correct explanation for statement- 1 .
(B) Statement-1 is true, statement-2 is true and statement- 2 is NOT the correct explanation for statement-1.
(C) Statement-1 is true, statement-2 is false.
(D*) Statement-1 is false, statement-2 is true.
[Sol. Using Tolemy's theorem for a cyclic quadrilateral
(z) $(\mathrm{AB})=\mathrm{ax}+\mathrm{by}$
$z \cdot c=a x+b y$
but $\quad a=b=c$
hence $x+y=z$ is true always

$\Rightarrow \quad S-1$ is false and S-2 is true]

[MATCH THE COLUMN]

$[(3+3+3+3) \times 2=24]$
Q. 15 Set of family of lines are described in column-I and their mathematical equation are given in column-II. Match the entry of column-I with suitable entry of column-II. (m and a are parameters)

Column-I

(A) having gradient 3
(B) having y intercept three times the x -intercept
(C) having x intercept (-3)
(D) concurrent at $(2,3)$

Column-II

(P) $m x-y+3-2 m=0$
(Q) $m x-y+3 m=0$
(R) $3 x+y=3 a$
(S) $3 x-y+a=0$
[Ans. (A) S; (B) R; (C) Q; (D) P]
[Sol. can be easily analysed.]
Q. 16
(A) Let ' P ' be a point inside the triangle ABC and is equidistant from its sides. DEF is a triangle obtained by the intersection of the external angle bisectors of the angles of the $\triangle A B C$. With respect to the triangle DEF point P is its
(B) Let ' Q ' be a point inside the triangle ABC

If $(A Q) \sin \frac{A}{2}=(B Q) \sin \frac{B}{2}=(C Q) \sin \frac{C}{2}$ then with respect to
the triangle ABC, Q is its
(C) Let ' S ' be a point in the plane of the triangle ABC . If the point is such that infinite normals can be drawn from it on the circle passing through A, B and C then with respect to the triangle $A B C, S$ is its
(D) Let ABC be a triangle. D is some point on the side BC such that the line segments parallel to $B C$ with their extremities on $A B$ and $A C$ get bisected by AD. Point E and F are similarly obtained on CA and AB . If segments AD, BE and CF are concurrent at a point R then with respect to the triangle $A B C, R$ is its
[Ans. (A) Q; (B) R; (C) S; (D) P]

Column-II

(P) centroid
(Q) orthocentre
(R) incentre
(S) circumcentre

[SUBJECTIVE TYPE]

Q. 17 If a, b, c are positive, then find the minimum value of $(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$.
[6]
[Ans. 9]
[Sol. For $\mathrm{a}, \mathrm{b}, \mathrm{c}$, A.M. $=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{3}$, H.M. $=\frac{3}{\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}}$
A.M. \geq G.M. \geq H.M. $\left.\Rightarrow \frac{a+b+c}{3} \geq \frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}} \Rightarrow(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right) \geq 9\right]$
Q. 18 Find the number of straight lines parallel to the line $3 x+6 y+7=0$ and have intercept of length 10 between the coordinate axes.
[Ans. 2]
[6]
[Sol. Slope of the given line is $-1 / 3$
let one line is $\frac{x}{a}+\frac{y}{b}=1$
$\therefore \quad$ slope $=-\frac{b}{a}$
$\Rightarrow \quad-\frac{\mathrm{b}}{\mathrm{a}}=-\frac{1}{3} \Rightarrow 3 \mathrm{~b}=\mathrm{a}$

also given $\mathrm{a}^{2}+\mathrm{b}^{2}=100 \quad$....(2)
(1) and (2) $\quad \Rightarrow \quad b= \pm \sqrt{10}$
$\mathrm{b}=\sqrt{10} ; \quad \mathrm{a}=3 \sqrt{10}$
$b=-\sqrt{10} ; \quad a=-3 \sqrt{10}$
$\therefore \quad$ Note a and b must be of same sign]

PrRACTMCE TESTT $\ddagger 5$

[STRAIGHT OBJECTIVE TYPE]

Q. $1 \quad$ A square is inscribed in the cirle $\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}+4 \mathrm{y}+33=0$. Its sides are parallel to the coordinate axes. Then one vertex of the square is
(A) $(1+\sqrt{2},-2)$
(B) $(1-\sqrt{2},-2)$
(C) $(1,-2+\sqrt{2})$
(D*) None
[Sol. The centre of the circle is $(1,-2)$ and radius $\sqrt{2}$. The diagonal of the square is $2 \sqrt{2}$ and side is 2 . The vertices are $(0,-3),(2,-3)(2,-1),(0,-1)$.]
Q. 2 If $4^{3}=8^{1+|\cos x|+\cos ^{2} x+\ldots \ldots \ldots \infty}$, then the number of values of x in $[0,2 \pi]$, is
(A) 1
(B) 2
(C) 3
(D*) 4
Q. $3 \quad \mathrm{~A}(1,2), \mathrm{B}(-1,5)$ are two vertices of a triangle ABC whose third vertex C lies on the line $2 \mathrm{x}+\mathrm{y}=2$. The locus of the centroid of the triangle is
(A*) $2 x+y=3$
(B) $x+2 y=3$
(C) $2 x-y=3$
(D) $-2 x-y=3$
[Sol. $\mathrm{h}=\frac{\mathrm{x}_{1}+1+(-1)}{3} ; \mathrm{k}=\frac{5+2+\mathrm{y}_{1}}{3}$
$\mathrm{x}_{1}=3 \mathrm{~h} ; \mathrm{y}_{1}=3 \mathrm{k}-7$
This lies on line $2 \mathrm{x}+\mathrm{y}=2$
$2(3 \mathrm{x})+3 \mathrm{k}-7=2$
$\Rightarrow \quad 6 \mathrm{x}+3 \mathrm{y}=9$
$\Rightarrow \quad 2 \mathrm{x}+\mathrm{y}=3$ Ans.]

Q. 4 If a, b, c, d and p are distinct real numbers such that $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+b^{2}+c^{2}+d^{2} \leq 0$. Then $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are
(A) in A.P.
(B*) in G.P.
(C) in H.P.
(D) satisfy $\mathrm{ab}=\mathrm{cd}$
[Sol. $\quad\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+b^{2}+c^{2}+d^{2} \leq 0$
$\Rightarrow \quad(\mathrm{ap}-\mathrm{b})^{2}+(\mathrm{bp}-\mathrm{c})^{2}+(\mathrm{cp}-\mathrm{d})^{2} \leq 0$
The sum of squares cannot be negative
$\therefore \quad(\mathrm{ap}-\mathrm{b})^{2}+(\mathrm{bp}-\mathrm{c})^{2}+(\mathrm{cp}-\mathrm{d})^{2}=0$
$a p-b=b p-c=c p-d=0$
$\mathrm{p}=\frac{\mathrm{b}}{\mathrm{a}}=\frac{\mathrm{c}}{\mathrm{b}}=\frac{\mathrm{d}}{\mathrm{c}} \quad \Rightarrow \quad \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are in G.P.]
Q. 5 A root of the equation $(a+b)(a x+b)(a-b x)=\left(a^{2} x-b\right)(a+b x)$ is
(A) $\frac{a+2 b}{2 a+b}$
(B) $\frac{2 a+b}{a+2 b}$
(C) $\frac{a-2 b}{2 a-b}$
(D*) $-\left(\frac{a+2 b}{2 a+b}\right)$
[Sol. Simplifying, the equation becomes
$(2 a+b) x^{2}-(a-b) x-(a+2 b)=0$
The sum of the coefficients $=0 \Rightarrow \quad x=1$ is a root.
The other root $=-\left(\frac{a+2 b}{2 a+b}\right)$]
Q. 6 A rhombus is inscribed in the region common to the two circles $x^{2}+y^{2}-4 x-12=0$ and $x^{2}+y^{2}+4 x-12=0$ with two of its vertices on the line joining the centres of the circles. The area of the rhombous is :
(A*) $8 \sqrt{3}$ sq.units
(B) $4 \sqrt{3}$ sq.units
(C) $16 \sqrt{3}$ sq.units
(D) none
[Hint: circles with centre $(2,0)$ and $(-2,0)$ each with radius 4
$\Rightarrow \mathrm{y}-\mathrm{axis}$ is their common chord.
The inscribed rhombus has its diagonals equal to 4 and $4 \sqrt{3}$
$\left.\therefore \quad \mathrm{A}=\frac{\mathrm{d}_{1} \mathrm{~d}_{2}}{2}=8 \sqrt{3} \quad\right]$

Q. 7 The locus of the centre of circle which touches externally the circle $x^{2}+y^{2}-6 x-6 y+14=0$ and also touches the y -axis is
(A) $x^{2}-6 x-10 y+14=0$
(B) $x^{2}-10 x-6 y+14=0$
(C) $y^{2}-6 x-10 y+14=0$
(D*) $y^{2}-10 x-6 y+14=0$
[Sol. If $\left(x_{1}, y_{1}\right)$ is the centre of the circle, then
$\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}=x_{1}{ }^{2}$
It touches the circle with centre (3,30 and radius 2 . The desired locus is
$\therefore(\mathrm{x}-3)^{2}+(\mathrm{y}-3)^{2}=(\mathrm{x}+2)^{2}$
or $y^{2}-10 x-6 x+14=0 \quad$]
Q. 8 The coordinates axes are rotated about the origin ' O ' in the counter clockwise direction through an angle of $\pi / 6$. If a and b are intercepts made on the new axes by a straight line whose equation referred to the old axes is $x+y=1$ then the value of $\frac{1}{a^{2}}+\frac{1}{b^{2}}$ is equal to
(A) 1
(B*) 2
(C) 4
(D) $\frac{1}{2}$
[Sol. Equation of line w.r.t. new axes

$$
\begin{aligned}
& \frac{X}{\mathrm{a}}+\frac{\mathrm{Y}}{\mathrm{~b}}=1 \\
& \mathrm{p}=\frac{1}{\sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}}=\frac{1}{\sqrt{1+1}}=\frac{1}{\sqrt{2}} \\
\Rightarrow \quad & \frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}=2 \text { Ans.] }
\end{aligned}
$$

Q. $9 \quad \mathrm{~A}(1,0)$ and $\mathrm{B}(0,1)$ and two fixed points on the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=1$. C is a variable point on this circle. As C moves, the locus of the orthocentre of the triangle $A B C$ is
(A*) $x^{2}+y^{2}-2 x-2 y+1=0$
(B) $x^{2}+y^{2}-x-y=0$
(C) $x^{2}+y^{2}=4$
(D) $x^{2}+y^{2}+2 x-2 y+1=0$
[Sol. Let $\mathrm{C}(\cos \theta, \sin \theta) ; \mathrm{H}(\mathrm{h}, \mathrm{k})$ is the orthocentre of the $\Delta \mathrm{ABC}$

$\mathrm{h}=1+\cos \theta$
$\mathrm{k}=1+\sin \theta$
$(x-1)^{2}+(y-1)^{2}=1$
$\left.x^{2}+y^{2}-2 x-2 y+1=0\right]$

[COMPREHENSION TYPE]
$[3 \times 3=9]$
Paragraph for question nos. 25 to 27
Consider 3 circles

$$
\begin{aligned}
& S_{1}: x^{2}+y^{2}+2 x-3=0 \\
& S_{2}: x^{2}+y^{2}-1=0 \\
& S_{3}: x^{2}+y^{2}+2 y-3=0
\end{aligned}
$$

Q. 10 The radius of the circle which bisect the circumferences of the circles $S_{1}=0 ; S_{2}=0 ; S_{3}=0$ is
(A) 2
(B) $2 \sqrt{2}$
(C*) 3
(D) $\sqrt{10}$
Q. 11 If the circle $S=0$ is orthogonal to $S_{1}=0 ; S_{2}=0$ and $S_{3}=0$ and has its centre at (a, b) and radius equals to 'r' then the value of $(a+b+r)$ equals
(A) 0
(B) 1
(C) 2
(D*) 3
Q. 12 The radius of the circle touching $\mathrm{S}_{1}=0$ and $\mathrm{S}_{2}=0$ at $(1,0)$ and passing through $(3,2)$ is
(A) 1
(B) $\sqrt{12}$
(C*) 2
(D) $2 \sqrt{2}$
[Sol.

(i)

$$
\begin{array}{ll}
\mathrm{r}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}+1=(\mathrm{a}+1)^{2}+\mathrm{b}^{2}+4 & \text { and } \\
\therefore \quad 2 \mathrm{a}+4=0 & (\mathrm{a}+1)^{2}+\mathrm{b}^{2}+4=\mathrm{a}^{2}+(\mathrm{b}+1)^{2}+4 \\
\therefore \quad & 2 \mathrm{a}=2 \mathrm{~b} \\
& \mathrm{a}=-2
\end{array}
$$

$\mathrm{r}^{2}=9 \Rightarrow \quad \mathrm{r}=3$ Ans.
(ii) $\mathrm{S}_{1}-\mathrm{S}_{2}=0 \Rightarrow \mathrm{x}=1$

$$
\mathrm{S}_{2}-\mathrm{S}_{3} \quad \Rightarrow \mathrm{y}=1
$$

$\therefore \quad$ Radical centre $=(1,1)$
radius $\mathrm{L}_{\mathrm{T}}=\sqrt{\mathrm{S}_{1}}=1$
$\therefore \quad$ equation of circle is $\quad(x-1)^{2}+(y-1)^{2}=1$
\Rightarrow radius $=1$ and $\mathrm{a}=1 ; \mathrm{b}=1 \Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{r}=3$ Ans.
(iii)

family of circles touches the line $x-1=0$ at $(1,0)$ is

$$
\begin{array}{ll}
& (\mathrm{x}-1)^{2}+(\mathrm{y}-0)^{2}+\lambda(\mathrm{x}-1)=0 \\
& \text { passing through }(3,2) \Rightarrow \quad 4+4+2 \lambda=0 \Rightarrow \quad \lambda=-4 \\
\therefore \quad & \mathrm{x}^{2}+\mathrm{y}^{2}-6 \mathrm{x}+5=0 \\
\therefore \quad & \text { radius } \sqrt{9-5}=2 \text { Ans.] }
\end{array}
$$

[REASONING TYPE]
Q. 13 Consider the circle $C: x^{2}+y^{2}-2 x-2 y-23=0$ and a point $P(3,4)$.

Statement-1: No normal can be drawn to the circle C, passing through $(3,4)$.

because

Statement-2: Point P lies inside the given circle, C .
(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
(B) Statement-1 is true, statement- 2 is true and statement- 2 is NOT the correct explanation for statement-1.
(C) Statement-1 is true, statement-2 is false.
(D*) Statement-1 is false, statement-2 is true.
[MULTIPLE OBJECTIVE TYPE]
[$1 \times 4=4]$
Q. 14 Let L_{1} be a line passing through the origin and L_{2} be the line $x+y=1$. If the intercepts made by the circle $x^{2}+y^{2}-x+3 y=0$
(A) $x+y=0$
(B*) $x-y=0$
(C*) $x+7 y=0$
(D) $x-7 y=0$
[Sol. The chords are of equal length, then the distances of the centre from the lines are equal.
Let L_{1} be $y-m x=0$. Centre is $\left(\frac{1}{2},-\frac{3}{2}\right)$
$\frac{\left|-\frac{3}{2}-\frac{\mathrm{m}}{2}\right|}{\sqrt{\mathrm{m}^{2}+1}}=\frac{\left|\frac{1}{2}-\frac{3}{2}-1\right|}{\sqrt{2}} \Rightarrow 7 \mathrm{~m}^{2}-6 \mathrm{x}-1=0$
$\Rightarrow \mathrm{m}=1,-\frac{1}{7} \quad$]

[MATCH THE COLUMN]

Q. 15

Column-I

(A) The sum $\sum_{r=1}^{100} r^{2} \tan \left(\frac{2 r-1) \pi}{4}\right)$ is equal to
(P) $\quad-5151$
(B) Solution of the equation $\cos ^{4} \mathrm{x}=\cos 2 \mathrm{x}$ which lie in the
(Q) $\quad-5050$ interval $[0,314]$ is $\mathrm{k} \pi$ where k equals
(C) Sum of the integral solutions of the inequality
(R) 5049
$\log _{1 / \sqrt{5}}\left(6^{x+1}-36^{x}\right) \geq-2$ which lie in the interval $[-101,0]$
(S) 4950
(D) Let $\mathrm{P}(\mathrm{n})=\log _{2} 3 \cdot \log _{3} 4 \cdot \log _{4} 5 \ldots \ldots . . \log _{\mathrm{n}-1}(\mathrm{n})$ then the value of $\sum_{\mathrm{k}=2}^{100} \mathrm{P}\left(2^{\mathrm{k}}\right)$ equals
[Ans. (A) Q; (B) S; (C) P; (D) R]
[Sol. (A) $S=1^{2}-2^{2}+3^{2}-4^{2}+\ldots . .+99^{2}-100^{2}$

$$
\begin{aligned}
& =-\left[\left(2^{2}-1^{2}\right)+\left(4^{2}-3^{2}\right)+\ldots \ldots+\left(100^{2}-99^{2}\right)\right] \\
& =-[1+2+3+4+\ldots \ldots . .+99+100]=-5050 \Rightarrow(\mathbf{Q}) \text { Ans. }
\end{aligned}
$$

(B) $\quad \cos ^{4} x=2 \cos ^{2} x-1$
$1+\cos ^{4} x-2 \cos ^{2} x=0$
$\left(1-\cos ^{2} \mathrm{x}\right)^{2}=0$
$\sin ^{2} x=0$
$\mathrm{x}=\pi[1+2+3+\ldots \ldots .+99]$
$=4950 \pi \quad \Rightarrow \quad \mathrm{k}=4950 \quad \Rightarrow \quad$ (S) Ans.
(C) $0<\left(6^{x+1}-36^{x}\right) \leq\left(\frac{1}{\sqrt{5}}\right)^{-2}$
$6 \cdot 6^{x}-6^{2 x} \leq 5$
$6^{2 x}-6 \cdot 6^{x}+5 \geq 0$
$\left(6^{x}-1\right)\left(6^{x}-5\right) \geq 0$
$6^{x} \geq 5$ or $\quad 6^{x} \leq 1 \Rightarrow \quad x \geq \frac{1}{\log _{5} 6} \quad$ or $\quad x \leq 0$
$6^{x+1}-36^{x}>0$
$6-6^{x}>0 \quad \Rightarrow \quad 6>6^{x}$
$\therefore \quad \mathrm{x}<1 \quad$....(2)
From (1) and (2), we have

$$
\begin{aligned}
& x \geq \frac{1}{\log _{5} 6} \quad \text { or } \quad x \leq 0 \\
& x \in(-\infty, 0] \cup\left[\log _{6} 5,1\right) \quad \Rightarrow \quad \text { (P) Ans. }
\end{aligned}
$$

(D) $\quad \mathrm{P}(\mathrm{n})=\log _{2} \mathrm{n}$

$$
\mathrm{P}\left(2^{\mathrm{k}}\right)=\log _{2} 2^{\mathrm{k}}=\mathrm{k}
$$

$$
\therefore \quad \sum_{\mathrm{k}=2}^{100}(\mathrm{k})=5049 \Rightarrow \quad \text { (R) Ans.] }
$$

Q. 16

Column-I

Column-II

(A) Two intersecting circles
(P) have a common tangent
(B) Two circles touching each other
(Q) have a common normal
(C) Two non concentric circles, one strictly inside the other
(D) Two concentric circles of different radii
(R) do not have a common normal
[Ans. (A) P, Q; (B) P, Q; (C) Q; (D) Q, S]
(S) do not have a radical axis.

[SUBJECTIVE]

Q. $17 \mathrm{~A}(0,1)$ and $\mathrm{B}(0,-1)$ are 2 points if a variable point P moves such that sum of its distance from A and B is 4. Then the locus of P is the equation of the form of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Find the value of $\left(a^{2}+b^{2}\right)$ is .
[Ans. 7]
[6]
[Sol. $\quad \sqrt{\mathrm{h}^{2}+(\mathrm{k}-1)^{2}}+\sqrt{\mathrm{h}^{2}+(\mathrm{k}+1)^{2}}=4$
$h^{2}+(k-1)^{2}=16+h^{2}+(k+1)^{2}-8 \sqrt{h^{2}+(k+1)^{2}}$
$16+4 \mathrm{k}=8 \sqrt{\mathrm{~h}^{2}+(\mathrm{k}+1)^{2}} \quad \Rightarrow \quad 4+\mathrm{k}=2 \sqrt{\mathrm{~h}^{2}+(\mathrm{k}+1)^{2}}$
$16+\mathrm{k}^{2}+8 \mathrm{k}=4 \mathrm{~h}^{2}+4(\mathrm{k}+1)^{2}$
$4 \mathrm{~h}^{2}+3 \mathrm{k}^{2}=12$
$\frac{\mathrm{h}^{2}}{3}+\frac{\mathrm{k}^{2}}{4}=1 \quad \Rightarrow \quad \frac{\mathrm{x}^{2}}{3}+\frac{\mathrm{y}^{2}}{4}=1 \quad \Rightarrow \quad \mathrm{a}^{2}=3$ and $\left.\mathrm{b}^{2}=4 \quad \Rightarrow \quad 3+4=7 \mathrm{Ans}\right]$
Q. 18 Find the product of all the values of x satisfying the equation $(5+2 \sqrt{6})^{x^{2}-3}+(5-2 \sqrt{6})^{x^{2}-3}=10$.
[6]
[Ans. 8]
[Sol. Since $5-2 \sqrt{6}=\frac{1}{5+2 \sqrt{6}}$, we have $\mathrm{t}+\frac{1}{\mathrm{t}}=10$ where $\mathrm{t}=(5+2 \sqrt{6})^{\mathrm{x}^{2}-3}$
$\Rightarrow \quad \mathrm{t}^{2}-10 \mathrm{t}+1=0 \quad \Rightarrow \quad \mathrm{t}=5 \pm 2 \sqrt{6}$
or $t=(5+2 \sqrt{6})^{ \pm 1}$
(1), (2) $\Rightarrow \quad x^{2}-3= \pm 1 \quad \Rightarrow \quad x^{2}=2,4$
$\Rightarrow \quad \mathrm{x}=-\sqrt{2}, \sqrt{2},-2,2 ; \quad \therefore \quad$ product $=8$ Ans.]

Q. 1 The sum of the infinite series $1+\frac{2}{3}+\frac{3}{3^{2}}+\frac{4}{3^{3}}+\ldots \ldots$. is
(A) $\frac{7}{4}$
(B) 2
(C) $\frac{8}{3}$
(D*) $\frac{9}{4}$
Q. 2 For real values of x , the function $\frac{\sin \mathrm{x} \cos 3 \mathrm{x}}{\sin 3 \mathrm{x} \cos \mathrm{x}}$ does not take values
(A) between -1 and 1
(B) between 0 and 2
(C*) between $\frac{1}{3}$ and 3
(D) between 0 and $\frac{1}{3}$
[Sol. $y=\frac{\tan x}{\tan 3 x}=\frac{1-3 t^{2}}{3-t^{2}}, t=\tan x$ as $\tan x \neq 0, y \neq 1 / 3$
$\mathrm{y}\left(3-\mathrm{t}^{2}\right)=1-3 \mathrm{t}^{2}$
$\Rightarrow \quad 0 \leq t^{2}=\frac{3 y-1}{y-3} \Rightarrow \quad(3 y-1)(y-3) \geq 0 \quad(y \neq 3)$
$\left.\therefore \quad \mathrm{y} \in\left(-\infty, \frac{1}{3}\right) \cup(3, \infty)\right]$
Q. $3 \quad \mathrm{AB}$ is a diameter of a circle and C is any point on the circumference of the circle. Then
(A*) Area of $\triangle A B C$ is maximum when it is isosceles.
(B) Area of $\triangle \mathrm{ABC}$ is minimum when it is isosceles.
(C) Perimeter of $\triangle \mathrm{ABC}$ is minimum when it is isosceles.

(D) None
[Sol. Area of $\triangle \mathrm{ABC}$ is maximum when C is farthest from AB , i.e. when it is isosceles.]
Q. 4 The sides of a right angled triangle are in G.P. The ratio of the longest side to the shortest side is
(A) $\frac{\sqrt{3}+1}{2}$
(B) $\sqrt{3}$
(C) $\frac{\sqrt{5}-1}{2}$
(D*) $\frac{\sqrt{5}+1}{2}$
Q. 5 In a right triangle ABC , right angled at A , on the leg AC as diameter, a semicircle is described. The chord joining A with the point of intersection D of the hypotenuse and the semicircle, then the length AC equals to
(A) $\frac{\mathrm{AB} \cdot \mathrm{AD}}{\sqrt{\mathrm{AB}^{2}+\mathrm{AD}^{2}}}$
(B) $\frac{\mathrm{AB} \cdot \mathrm{AD}}{\mathrm{AB}+\mathrm{AD}}$
(C) $\sqrt{\mathrm{AB} \cdot \mathrm{AD}}$
(D*) $\frac{\mathrm{AB} \cdot \mathrm{AD}}{\sqrt{\mathrm{AB}^{2}-\mathrm{AD}^{2}}}$
[Sol. $l \cdot \mathrm{x}=\mathrm{y} \sqrt{l^{2}+\mathrm{x}^{2}} \quad$ where $l=\mathrm{AC} ; \mathrm{x}=\mathrm{AB}, \mathrm{y}=\mathrm{AD}$
$l^{2} \mathrm{x}^{2}=\mathrm{y}^{2}\left(l^{2}+\mathrm{x}^{2}\right)$
$1^{2}\left(x^{2}-y^{2}\right)=x^{2} y^{2}$
$l=\frac{\mathrm{xy}}{\sqrt{\mathrm{x}^{2}-\mathrm{y}^{2}}}=\frac{\mathrm{AB} \cdot \mathrm{AD}}{\sqrt{\mathrm{AB}^{2}-\mathrm{AD}^{2}}}$ Ans.]

www.tekoclasses.com, Bhopal, Ph.: (0755) 3200000 , Deepawali Assignment [29] of 16
Q. $6 \quad A B C$ is an isoscele triangle with $A B=A C$. The equation of the sides $A B$ and $A C$ are $2 x+y=1$ and $x+2 y=2$. The sides $B C$ passes through the point $(1,2)$ and makes positive intercept on the x-axis. The equation of $B C$ is
(A) $x-y+1=0$
(B*) $x+y-3=0$
(C) $2 x+y-4=0$
(D) $x-2 y+3=0$
[Sol. Slope of $\mathrm{AB}=-2$; slope of $\mathrm{AC}=\frac{-1}{2}$; slope of $\mathrm{BC}=\mathrm{m}$
$\frac{m+2}{1-2 m}=\frac{-\frac{1}{2}-m}{1-\frac{1}{2} m} \Rightarrow 4-m^{2}=-\left(1-4 m^{2}\right)=4 m^{2}-1$

$5 \mathrm{~m}^{2}=5 \quad \Rightarrow \quad \mathrm{~m}= \pm 1$
$(y-2)=1(x-1) \quad$ or $\quad(y-2)=-1(x-1)$
x-intercept $x=-1 \quad x=3$ Ans.]
Q. 7 The number of tangents that can be drawn from the point $\left(\frac{5}{2}, 1\right)$ to the circle passing through the points $(1, \sqrt{3}),(1,-\sqrt{3})$ and $(3,-\sqrt{3})$ is
(A) 1
(B*) 0
(C) 2
(D) None
[Sol. The triangle is right angled. Its circum circle is $x^{2}+y^{2}-4 x=0\left(\frac{5}{2}\right)^{2}+1-4 \cdot \frac{5}{2}<0$ The point is inside the circle.]
Q. 8 The image of the line $x+2 y=5$ in the line $x-y=2$, is
(A*) $2 x+y=7$
(B) $x+2 y=5$
(C) $2 x+3 y=9$
(D) $2 x-3 y=3$
[Sol. Image is $x+2 y-5+\lambda(x-y-2)=0$
now equate perpendicular distance

Q. 9 The area of the quadrilateral formed by the lines $\sqrt{3} x+y=0, \sqrt{3} y+x=0, \sqrt{3} x+y=1$, $\sqrt{3} y+x=1$ is
(A) 1
(B*) $\frac{1}{2}$
(C) $\sqrt{2}$
(D) 2
[Sol. $\quad \mathrm{p}_{1}=\frac{1}{2} ; \mathrm{p}_{2}=\frac{1}{2}$
Hence it is a rhombus
Area is $\frac{p_{1} p_{2}}{\sin \theta}$
$\left(\theta=30^{\circ}\right)=\frac{1}{4} \cdot \frac{2}{1}=\frac{1}{2}$ Ans.]

Q. 10 B and C are fixed points having co-ordinates $(3,0)$ and $(-3,0)$ respectively . If the vertical angle BAC is 90°, then the locus of the centroid of the $\triangle \mathrm{ABC}$ has the equation :
(A*) $x^{2}+y^{2}=1$
(B) $x^{2}+y^{2}=2$
(C) $9\left(x^{2}+y^{2}\right)=1$
(D) $9\left(x^{2}+y^{2}\right)=4$
[Hint: Let $A(a, b)$ and $G(h . k)$ Now A, G, O are collinear
$\Rightarrow \mathrm{h}=\frac{2.0+\mathrm{a}}{3} \Rightarrow \mathrm{a}=3 \mathrm{~h}$ and similarly $\mathrm{b}=3 \mathrm{k}$.
Now (a, b) lies on the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=9 \Rightarrow$ A]

Q. 11 Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ three numbers between 2 and 18 such that their sum is 25 . If $2, \mathrm{a}, \mathrm{b}$ are in A.P. and $\mathrm{b}, \mathrm{c}, 18$ are in G.P., then 'c' equal
(A) 10
(B*) 12
(C) 14
(D) 16
[Sol. $\quad \mathrm{a}+\mathrm{b}+\mathrm{c}=25$
$2, \mathrm{a}, \mathrm{b}$ are in A.P. $\quad \Rightarrow \quad 2+\mathrm{b}=2 \mathrm{a}$
$\mathrm{b}, \mathrm{c}, 18$ are in G.P. $\quad \Rightarrow \quad \mathrm{c}^{2}=18 \mathrm{~b}$
Eliminating a and b from (1) to (3)

$$
\begin{aligned}
& a=1+\frac{b}{2}=1+\frac{c^{2}}{36}, b=\frac{c^{2}}{18} \\
& 1+\frac{c^{2}}{36}+\frac{c^{2}}{18}+c=25 \quad \Rightarrow \quad c^{2}+12 c-288=0 \quad \Rightarrow \quad c=12,-24
\end{aligned}
$$

But 'c' lies between 2 and 18
$\therefore \quad \mathrm{c}=12$ Ans.]
o... $, \ldots, \ldots \ldots . . x^{2}+\mathrm{px}+\mathrm{q}=0$ are $\tan 30^{\circ}$ and $\tan 15^{\circ}$, then $(2+\mathrm{q}-\mathrm{p})$ equals
(A) 0
(B) 1
(C) 2
(D*) 3
[Sol. $-\mathrm{p}=\tan 30^{\circ}+\tan 15^{\circ}=\frac{1}{\sqrt{3}}+2-\sqrt{3}=\frac{2 \sqrt{3}-2}{\sqrt{3}}$
$\mathrm{q}=\tan 30^{\circ} \tan 15^{\circ}=\frac{1}{\sqrt{3}}(2-\sqrt{3})=\frac{2-\sqrt{3}}{\sqrt{3}}$
$2+\mathrm{q}-\mathrm{p}=2+\frac{2-\sqrt{3}+2 \sqrt{3}-2}{\sqrt{3}}=3$ Ans. $]$

[REASONING TYPE]

Q. 13 Consider the lines
$L:(k+7) x-(k-1) y-4(k-5)=0$ where k is a parameter
and the circle
$C: x^{2}+y^{2}+4 x+12 y-60=0$
Statement-1: Every member of L intersects the circle ' C ' at an angle of 90°

because

Statement-2: Every member of L is tangent to the circle C.
(A) Statement-1 is true, statement-2 is true; statement-2 is correct explanation for statement-1.
(B) Statement- 1 is true, statement- 2 is true; statement- 2 is NOT the correct explanation for statement- 1 .
(C*) Statement-1 is true, statement-2 is false.
(D) Statement- 1 is false, statement- 2 is true.
[Exp. Centre $(-2,-6)$. Substituting in L

$$
-2(k+7)+6(k-1)-4(k-5)=(-2 k+6 k-4 k)-14-6+20=0
$$

Hence every member of L passing through the centre of the circle $\quad \Rightarrow \quad$ cuts it at 90°.
Hence S-1 is true and S-2 is false.]
[MULTIPLE OBJECTIVE TYPE]
Q. 14 Consider the points $O(0,0), A(0,1)$ and $B(1,1)$ in the $x-y$ plane. Suppose that points $C(x, 1)$ and $\mathrm{D}(1, \mathrm{y})$ are chosen such that $0<\mathrm{x}<1$ and such that O, C and D are collinear. Let sum of the area of triangles OAC and BCD be denoted by 'S' then which of the following is/are correct?
(A*) Minimum value of S is irrational lying in ($1 / 3,1 / 2$)
(B) Minimum value of S is irrational in $(2 / 3,1)$
$\left(\mathrm{C}^{*}\right)$ The value of x for minimum value of S lies in $(2 / 3,1)$
(D) The value of x for minimum values of S lies in $(1 / 3,1 / 2)$
[Sol. $\quad S=$ Area of $\Delta \mathrm{OAC}+$ area of $\Delta \mathrm{BCD}$

$$
=\frac{1 \cdot \mathrm{x}}{2}+\frac{(1-\mathrm{x})(\mathrm{y}-1)}{2} \quad 0<\mathrm{x}<1
$$

$S=\frac{x}{2}-\frac{(x-1)(y-1)}{2}$
Now Δ 's CBD and OCA are similar

$$
\begin{aligned}
\therefore & \frac{y-1}{1}=\frac{1-x}{x} \\
& y=1+\frac{1-x}{x}=\frac{1}{x}
\end{aligned}
$$

$$
S=\frac{x}{2}-\frac{(x-1)((1 / x)-1)}{2}=\frac{x}{2}+\frac{(x-1)^{2}}{2 x}=\frac{x^{2}+(x-1)^{2}}{2 x}=\frac{2 x^{2}-2 x+1}{2 x}
$$

$$
=x+\frac{1}{2 \mathrm{x}}-1=\left(\sqrt{\mathrm{x}}-\frac{1}{\sqrt{2 \mathrm{x}}}\right)^{2}-1+\sqrt{2}
$$

$\therefore \quad$ A is minimum if $\sqrt{\mathrm{x}}=\frac{1}{\sqrt{2 \mathrm{x}}} \quad$ i.e. $\quad \mathrm{x}=\frac{1}{\sqrt{2}}$ which lies in $(2 / 3,1)$
and $\quad \mathrm{A}_{\text {min }}=\sqrt{2}-1$ which lies in $\left.(1 / 3,1 / 2) \Rightarrow \quad(\mathrm{A}) \&(\mathrm{C})\right]$
Q. 15 If $5 x-y, 2 x+y, x+2 y$ are in A.P. and $(x-1)^{2},(x y+1),(y+1)^{2}$ are in G.P., $x \neq 0$, then $(x+y)$ equals
(A*) $\frac{3}{4}$
(B) 3
(C) -5
(D*) -6
[Sol. $\quad 5 \mathrm{x}-\mathrm{y}+\mathrm{x}+2 \mathrm{y}=2(2 \mathrm{x}+\mathrm{y}) \Rightarrow 2 \mathrm{x}=\mathrm{y}$]
$(\mathrm{x}-1)^{2}(\mathrm{y}+1)^{2}=(\mathrm{xy}+1)^{2} \quad \Rightarrow \quad(\mathrm{x}-1)(2 \mathrm{x}+1)= \pm(\mathrm{xy}+1)$
$-\mathrm{x}-1=1 \quad \Rightarrow \quad \mathrm{x}=-2, \mathrm{y}=-4$
Also $\quad 2 x^{2}-x-1=-2 x^{2}-1 \Rightarrow \quad x=\frac{1}{4}, y=\frac{1}{2}$
$\therefore \quad \mathrm{x}+\mathrm{y}=-6$ or $\left.\frac{3}{4}\right]$
Q. 16

Column-I

(A) The four lines $3 x-4 y+11=0 ; 3 x-4 y-9=0$; $4 x+3 y+3=0$ and $4 x+3 y-17=0$ enclose a figure which is
(B) The lines $2 \mathrm{x}+\mathrm{y}=1, \mathrm{x}+2 \mathrm{y}=1,2 \mathrm{x}+\mathrm{y}=3$ and $x+2 y=3$ form a figure which is
(C) If ' O ' is the origin, P is the intersection of the lines $2 x^{2}-7 x y+3 y^{2}+5 x+10 y-25=0$, A and B are the points in which these lines are cut by the line $x+2 y-5=0$, then the points O, A, P, B (in some order) are the vertices of
(P) a quadrilateral which is neither a parallelogramnor a trapezium nor a kite.
(Q) a parallelogram which is neither a rectangle nor a rhombus
(R) a rhombus which is not a square.
(S) a square
[Ans. (A) S; (B) R; (C) Q]
[Sol.
(A)

(B) $\mathrm{d}_{1}=\frac{2}{\sqrt{5}}$

(C) $2 x^{2}-7 x y+3 y^{2}+5 x+10 y-25=0 \equiv(x-3 y+5)(2 x-y-5)$
the point of intersection is $(4,3)$
homogenising $f(x, y)=0$ and $x+2 y-5=0$
we get the homogeneous equation

$$
2 x^{2}-7 x y+3 y^{2}=0
$$

hence OAPB is a parallelogram]

Q. 17

Column-I

Column-II
(A) If the straight line $\mathrm{y}=\mathrm{kx} \forall \mathrm{K} \in \mathrm{I}$ touches or passes outside
(P) 1 the circle $\mathrm{x}^{2}+\mathrm{y}^{2}-20 \mathrm{y}+90=0$ then $|\mathrm{k}|$ can have the value
(B) Two circles $x^{2}+y^{2}+p x+p y-7=0$
(Q) 2 and $x^{2}+y^{2}-10 x+2 p y+1=0$ intersect each other orthogonally then the value of p is
(C) If the equation $x^{2}+y^{2}+2 \lambda x+4=0$ and $x^{2}+y^{2}-4 \lambda y+8=0$ represent real circles then the value of λ can be
(D) Each side of a square is of length 4 . The centre of the square is $(3,7)$.

One diagonal of the square is parallel to $\mathrm{y}=\mathrm{x}$. The possible abscissae of the vertices of the square can be
[Ans. (A) P, Q, R; (B) Q, R; (C) Q, R, S; (D) P, S]
www.tekoclasses.com, Bhopal, Ph.: (0755) 3200000 , Deepawali Assignment [33] of 16
[Sol. (A) $x^{2}+k^{2} x^{2}-20 k x+90=0$

$$
x^{2}\left(1+k^{2}\right)-20 k x+90=0
$$

$$
\mathrm{D} \leq 0
$$

$$
400 \mathrm{k}^{2}-4 \times 90\left(1+\mathrm{k}^{2}\right) \leq 0
$$

$$
10 k^{2}-9-9 k^{2} \leq 0
$$

$$
\mathrm{k}^{2}-9 \leq 0 \quad \Rightarrow \quad \mathrm{k} \in[-3,3]
$$

(B) $2\left(\frac{\mathrm{p}}{2} \times 5+\frac{\mathrm{p}}{2} \times \mathrm{p}\right)=-6 \Rightarrow-5 \mathrm{p}+\mathrm{p}^{2}+6=0 \Rightarrow \mathrm{p}^{2}-5 \mathrm{p}+6=0 \Rightarrow \mathrm{p}=2$ or 3 Ans.
(C) $\mathrm{r}_{1}{ }^{2}=\lambda^{2}-4 \geq 0$
$\lambda \in(-\infty,-2] \cup[2, \infty)$
$\mathrm{r}_{2}{ }^{2}=4 \lambda^{2}-8 \geq 0$
$\lambda^{2}-2 \geq 0$
$\lambda \in(-\infty,-\sqrt{2}] \cup[\sqrt{2}, \infty)$.
(1) $\cap(2)$ is $\lambda \in(-\infty,-2] \cup[2, \infty)$ Ans.
(D)

Ans. $\{1,5\}]$

[SUBJECTIVE]

Q. 18 Find the area of the pentagon whose vertices taken in order are (0,4), (3, 0), (6, 1), (7, 5) and (4, 9).
[Sol. $\quad \mathrm{A}_{1}=\frac{1}{2}\left|\begin{array}{lll}0 & 4 & 1 \\ 3 & 0 & 1 \\ 4 & 9 & 1\end{array}\right|=\frac{1}{2}|-4(-1)+1(27)|=\frac{31}{2}$ [11th, 25-11-2007]
$\mathrm{A}_{2}=\frac{1}{2}\left|\begin{array}{lll}3 & 0 & 1 \\ 4 & 9 & 1 \\ 6 & 1 & 1\end{array}\right|=\frac{1}{2}|3 \cdot(9-1)+1 \cdot(4-54)|=\frac{1}{2}|24-50|=13$
$\mathrm{A}_{3}=\frac{1}{2}\left|\begin{array}{lll}4 & 9 & 1 \\ 7 & 5 & 1 \\ 6 & 1 & 1\end{array}\right|=\frac{1}{2}|4 \times 4-9(1)+1(7-30)|$

$=\frac{1}{2}|16-9-23|=\frac{16}{2}=8$
$\therefore \quad$ Area of pentagon $=\frac{31}{2}+13+8=\frac{73}{2}=36.5$ sq. units $]$

